A. 生活中的数学有哪些例子
生活中的数学问题
江苏省海安县曲塘中学 汪社生 (226661) (适合初一年级)
以现实社会的生产、生活问题为背景的数学应用题愈来愈受到关注。由于这类问题涉及的背景材料十分广泛,涉及社会生活方方面面,所以要求解题者具有丰富的社会常识和较强的阅读理解能力,再加之有些题目中名词、术语专业性太强,使许多同学望而生畏。为此,本文就列一元一次方程解决生活中的一些数学问题举几例进行解析,供同学们参考。
一、纳税问题
例1 依法纳税是公民应尽的义务。根据我国税法规定,公民全月工资、薪金所得不超过929元不必纳税,超过929元的部分为全月应纳税所得额,此项税款按下表累加计算:
全月应纳税所得额 税率
不超过500元部分 5%
超过500元至2000元的部分 10%
超过2000元至5000元的部分 15%
…… ……
某人本月纳税150.1元。则他本月工资收入为 。
解析:解答本题首先要弄清题意读懂图表,从中应理解税款是分段计算累加求和而得的。因为500×5%<150.1<2000×10%,所以可以判断此人的全月纳税应按表中第一档和第二档累加计算。设此人的本月工资为x元。根据题意得:
500×5%+( -929-500)×10%=150.1
解得, =2680
即此人的本月工资是2680元。
二、票价问题
例2 某音乐厅五月决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的 。若提前购票,则给予不同程度的优惠。在五月份内,团体票每张12元,共售出团体票的 ;零售票每张16元,共售出零售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?
解析:本题中数量较多,关系复杂,为了便于弄清它们之间的关系首先要分别列出五、六月份售出的团体票、零售票的张数及票款的代数式。设总票数为a张,六月份零售票应按每张x元定价,则五月份团体票售出数为: ,票款收入为: (元)
零售票售出数为: ,票款收入为: (元)
六月份团体票所剩票数为: ,票款收入为: (元)
零售票所剩票数为: ,票款收入为: (元)
根据题意,得
解之,得:
答:六月份零售票应按每张19.2元定价
三、销售利润问题
例3 某企业生产一种产品,每件成本400元,销售价为510元,本季度销售m件。为了进一步扩大市场,该企业决定下季度销售价降低4%,预计销售量将提高10%。要使销售利润(销售价-成本价)保持不变,该产品每件的成本价应降低多少元?
解析:解答本题的关键是要弄清降低、提高的百分数的含义。设该产品每件的成本价应降低x元,则每件降低后的成本是( )元,销售价为510(1-4%)元,根据题意得,
[510(1-4%)-( )](1+10%)m=(510-400)m
解之,得x=10.4
答:该产品每件得成本价应降低10.4元
四、方案设计问题
例4 某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元。该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨;但受人员限制,两种加工方式不可同时进行,又受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕。为此,该厂设计了两种可行性方案:
方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
你认为选择哪种方案获利最多,为什么?
解析:本题看似很复杂,限制条件较多,但如将此题分解为分别求出方案一、方案二的总利润就很容易解答。
若选择方案一,总利润=4×2000+(9-4)×500=10500(元)
若选择方案二,设4天内加工酸奶x吨,则加工奶片(9-x)吨,根据题意,得
解之,得x=7.5
总利润1200×7.5+2000×1.5=12000(元)
比较方案一、方案二所获得的总利润可知,选择方案二获利多。
五、节约用水问题
例5 (1)据《北京日报》报道:北京市人均水资源占有量只有300立方米,仅是全国人均占有量的 ,是世界人均占有量的 。问全国人均水资源占有量是多少立方米?世界人均水资源占有量是多少立方米?
(2)北京市一年漏掉的水相当于新建一个自来水厂全年的产量。据不完全统计,全市至少有 6×105个水龙头和2×105个抽水马桶漏水,如果一个关不紧的水龙头,一个月能漏掉a立方米的水;一个漏水马桶,一个月漏掉b立方米水,那么一个月造成的水流失量至少多少立方米(用含a、b的代数式表示);
(3)水资源透支令人担忧,节约用水迫在眉睫。针对居民用水浪费现象,北京市制定居民用水新标准,规定三口之家每月标准用水量,超标部分加价受费。假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某三口之家某月用水12立方米,交水费22元,请你通过列方程求出北京市规定三口之家每月标准用水量为多少立方米?
解析:(1)2400立方米、9600立方米
(2) 立方米
(3)由于12×1.3<22,所以12立方米水中有超标部分。
设北京市规定三口之家每月标准用水量为x立方米,根据题意,得
解之,得 x=8
答北京市规定三口之家每月标准用水量为8立方米,
六、反腐倡廉问题
例6 椐《新华月报》消息,巴西医生马廷恩经过10年研究后得出结论:卷入腐败行为的人容易得癌症、心血管病,如果将犯有贪污、受贿罪的580名官员与600名廉洁官员进行比较,可以发现,后者的健康人数比前者的健康人数多272人,两者患病(包括致死)者共444人。试问犯有贪污、受贿罪的官员的健康人数占580名官员的百分之几?廉洁官员的健康人数占600名官员的百分之几?
解析 本题的审题关键是要弄清楚贪官、廉官的健康人数、患病(致死)人数及总人数之间的关系。设580名贪官中健康人数是x人,则贪官、廉官的健康人数、患病(致死)人数及总人数之间的关系如下表:
贪官 廉官
健康人数 x (272+x)
患病(致死)人数 580-x 600-(272+x)
总人数 580 600
根据贪官、廉官中患病(致死)的总人数是444人,列出方程
解之,得
40%, 84%
答:犯有贪污、受贿罪的官员的健康人数占580名官员的40%?廉洁官员的健康人数占600名官员的84%?
从以上例题可以看出,数学知识在社会的各个领域及生活的方方面面都有着广泛的应用,重视数学在实际生活中的应用,既是数学教育的趋势,也是今后中考命题的趋势。同学们在平时学习中,要认真观察生活,把学到的数学知识与生活现象密切联系起来,学以致用,提高解决实际问题的能力。
B. 高中数学经典例题有那些
这个问题是在是太笼统,经典的例题太多了,不可能在这里回答清楚。高考真题都是经典的例题。多做高考题,按照类型做会有很大的收获。
C. 数学问题有哪些分类
植树问题 高斯问题 找规律 路程问题 流水问题 百分比问题 进制问题 抽屉问题 统计学 立体 几何代数 解析几何 数独 进制
D. 日常生活中的数学问题有哪些
一、早在封建社会的中国历法把一昼夜分成一百刻再分十二时,每时八刻三十三秒三十三微三十三纤,永无尽数。而西方国家则把九十六刻分成十二时则无余数,方便计算。
二、旧中国的瓦房,房顶从正中央向房子前后两侧向下倾斜切都是呈现三角形状,三角形具有稳定性被运用在房屋的建设中;现在各种道路建筑桥梁等的建设更是离不开数学。
三、市内里的红绿灯,每隔多久红灯亮一次?一辆车在这段路上行驶时速多少,撞上红灯亮的次数才是最少?最节省时间?一层楼有多高?10米是多长?比你高的人是谁?比你矮的人是谁?和你差不多的是谁? 古今中外出现的很多关于数学与生活的故事,数学涉及的领域实在是太广了。
四、在经济学的应用:银行利率、股票的上涨与下跌、衣服打折等等。
银行存款分:整存整取、零存整取、定期存款、活期、国债这些存款形式各种各样,利率也有大有小,平时我们是这样计算利率的:本金×利率×时间=所得利息,然后还要从利息里扣除20%来上税(除国债外)之后剩下的80%的利息就是你自己应得的利息了。
五、工程师使用比例尺,为了让人们更好的了解这件东西;商农使用的四则计算,是为了更简单、准确的计算出该商品价值;制作各类统计表,是为了更好的统计资料,使人一看一目了然;使用百分数,是为了更好的计算出商品打折后的价钱及折扣率;
计算容积或体积而使用去尾法,是为了确保无误的让物品存放而不溢出;同一类单位换算,是为了方便我们的计算;使用代数代表运算定律和计算公式,是为了更方便地为研究和解决问题。
(4)数学例题有哪些扩展阅读:
数学源自数千年前人们的生产实践,自古以来就与人类的日常生活密不可分。着名的阿基米德发现的浮力原理,也是从生活中发现的。
传说希伦王召见阿基米德,让他鉴定纯金王冠是否掺假。他冥思苦想多日,在跨进澡盆洗澡时,从看见水面上升得到启示,作出了关于浮体问题的重大发现,并通过王冠排出的水量解决了国王的疑问。
在着名的《论浮体》一书中,他按照各种固体的形状和比重的变化来确定其浮于水中的位置,并且详细阐述和总结了后来闻名于世的阿基米德原理:放在液体中的物体受到向上的浮力,其大小等于物体所排开的液体重量。从此使人们对物体的沉浮有了科学的认识。
E. 数学规律题有哪些
找规律题目,一般是从特殊到一般,或是观察已有的式子或等式,看有什么规律。这需要平时积累经验,离中考还有三个月,希望你能通过多做此类题目,找到这类题目的答题技巧。
如:找规律 8 17 25 33……
(序号)1 (已知条件)8
2 17=8×2+1
3 25=8×3+1
4 33=8×4+1
(发现规律了,8×序号+1)
n 8×n+1
规定
1,2,4,7,11,16,(22),(29), ——相差为:1,2,3,4,5,6,…
2,5,10,17,26,(37),(50), ——相差为:3,5,7,9,…
0,3,8,15,24,(35),(48),——相差为:3,5,7,9,…
找规律填空:9-1=8,16-4=12,25-9=16,36-16=20,49-25=24。
F. 很有意思的数学题有哪些
趣味数学题
1.小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好几只自己的指甲?
2.小华带50元钱去商店买一个价值38元的小汽车,但售货员只找给他2元钱,这是为什么?
3.小军说:“我昨天去钓鱼,钓了一条无尾鱼,两条无头的鱼,三条半截的鱼。你猜我一共钓了几条鱼?”同学们猜猜小军一共钓了几条鱼?
4.6匹马拉着一架大车跑了6里,每匹马跑了多少里?6匹马一共跑了多少里?
5.一只绑在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢?
6.王某从甲地去乙地,1分钟后,李某从乙地去甲地。当王某和李某在途中相遇时,哪一位离甲地较远一些?
7.时钟刚敲了13下,你现在应该怎么做?
8.在广阔的草地上,有一头牛在吃草。这头牛一年才吃了草地上一半的草。问,它要把草地上的草全部吃光,需要几年?
9.妈妈有7块糖,想平均分给三个孩子,但又不愿把余下的糖切开,妈妈怎么办好呢?
10.公园的路旁有一排树,每棵树之间相隔3米,请问第一棵树和第六棵树之间相隔多少米?
11.把8按下面方法分成两半,每半各是多少?算术法平均分是____,从中间横着分是____,从中间竖着分是____.
12.一个房子4个角,一个角有一只猫,每只猫前面有3只猫,请问房里共有几只猫?
13.一个房子4个角,一个角有一只猫,每只猫前面有4只猫,请问房里共有几只猫?
14.小军、小红、小平3个人下棋,总共下了3盘。问他们各下了几盘棋?(每盘棋是两个人下的)
15.小明和小华每人有一包糖,但是不知道每包里有几块。只知道小明给了小华8块后,小华又给了小明14块,这时两人包里的糖的块数正好同样多。同学们,你说原来谁的糖多?多几块?
答案:
1.20只,包括手指甲和脚指甲
2.因为他付给售货员40元,所以只找给他2元;
3.0条,因为他钓的鱼是不存在的;
4.6里,36里;
5.只要教小狗转过身子用后脚抓骨头,就行了。
6.他们相遇时,是在同一地方,所以两人离甲地同样远;
7.应该修理时钟;
8.它永远不会把草吃光,因为草会不断生长;
9.妈妈先吃一块,再分给每个孩子两块;
10.15米;
11.4,0,3.
12.4只;
13.5只;
14.2盘;
15.原来小华糖多;14-8=6块,因为多给了6块两人糖的块数正好同样多,所以原来小华比小明多12块。
希望有帮到你!
G. 古今中外的数学名题有哪些 急急急
现代数学上的三大难题:一是有20棵树,每行四棵,古罗马、古希腊在16世纪就完成了16行的排列,18世纪高斯猜想能排18行,19世纪美国劳埃德完成此猜想,20世纪末两位电子计算机高手完成20行纪录,跨入21世纪还会有新突破吗?
二是相邻两国不同着一色,任一地图着色最少可用几色完成着色?五色已证出,四色至今仅美国阿佩尔和哈肯,罗列了很多图谱,通过电子计算机逐一理论完成,全面的逻辑的人工推理证明尚待有志者。
三是任三人中可证必有两人同性,任六人中必有三人互相认识或互相不认识(认识用红线连,不认识用蓝线连,即六质点中二色线连必出现单色三角形)。近年来国际奥林匹克数学竞赛也围绕此类热点题型遴选后备攻坚力量。(如十七个科学家讨论三课题,两两讨论一个题,证至少三个科学家讨论同一题;十八个点用两色连必出现单色四边形;两色连六个点必出现两个单色三角形,等等。)单色三角形研究中,尤以不出现单色三角形的极值图谱的研究更是难点中之难点,热门中之热门。
归纳为20棵树植树问题,四色绘地图问题,单色三角形问题。通称现代数学三大难题。
H. 初一的数学题目有哪些
初一出学会会考哪些题型?一般来说,初一试卷都有如下几个特点:
1、10道选择题,都是基础概念的题型,包含有理数,整式,一元一次方程,和几何基础,还有数据统计等,中低难度。
2、10到填空题,或者8道。和选择一样,都是基础概念的题型,包含有理数,整式,一元一次方程,和几何基础,还有数据统计等,中低难度。
3、化简求值类型题,和有理数计算题,解方程类的题,肯定会有。计算题难度较大的或者还会有阅读理解型的题型,这几年这种类型的计算题越来越多。方老师数学课堂也经常讲这种题型。
4、一元一次方程应用题肯定会有一道题。至于是行程问题,工程问题,还是收费问你,还是配套问题,还是利息问题,还是方案抉择问题,都有可能。
5、数据统计简答题会有,一般会是条形统计图和扇形统计图,然后要求补全统计图的形式,或者求圆心角的形式。
5、线段计算和角度计算题肯定会各有一道题。如果难度较大的角度计算题,会有旋转参与进来。
只有哪些是重点,方老师告诉大家,数学凡是基础的都是重点。所以,同学们只要把基础做好,数学考试是没有问题的。
一般来说,120分的数学试卷,105分都是简单的基础题,7分式中等难度题型,8分式稍微难点的题目。考105分只要基础抓好,基本没有问题。112分,算是比较好的了。
附初一数学题目
第一学期期末考试初一数学试卷
1.在-(-8),∣-1∣,-∣0∣,(-2)^3 ,-2^4 这四个数中,负数共有( )
A.4个 B.3个 C.2个 D.1个
2.中海油集团成立29年来,发展异常迅猛,到2020年在深水地区实现新的突破,建设一个5000万吨的大油田。“5000万” 用科学记数法可表示为()
A.5×10^3 B.5×10^6 C.5×10^7 D.5×10^8
3.若实数a满足a-∣a∣=2a,则( )
A.a>0 B.a<0 C.a≥0 D.a≤0
4.下列各式中的大小关系成立的是( )
A.-π>-3.14
B. -2^3>-3^2
C. -10/3>-3
D.-∣-3∣>- 2
5.如果a与b互为相反数,则下列各式不正确的是( )
A.a+b=0 B.|a|=|b| C.a-b=0 D.a=-b
6.某商场为促销,按如下规定对顾客实行优惠:
①若一次购物不超过200元,则不予优惠; ②若一次购物超过200元,但不超过500
I. 趣味数学题有那些
24点,九宫格
J. 数学历史名题有哪些
中国古代:勾股定理,赵爽炫图,鸡兔同笼,韩信点兵……
世界:棋盘麦粒(国王的重赏),奇特的墓志铭,化圆为方,三等分角,哥德巴赫猜想,霍奇猜想,黎曼假设,托尔斯泰的算术题……