A. 高考数学主要考什么内容
高考数学主要知识点:
第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
B. 高考 数学文理科有哪些考的内容一样
我是07年参加的高考,我那年文理数学主要区别是理科比文科多学了 复数 ,其他的东西几乎差不多。不过理科的试题回比文科难一些 比如一道大题,前几问都一样,最后一问,理科会比文科难一点,复杂一点。
C. 文科 理科 高考时分别都考哪些科目
高考文科考的科目:
语文、文科数学、英语、综合(政治、地理和历史)。
理科高考科目:
语文、理科数学、英语、综合 (物理、化学和生物)。
文理分科是在中国大陆、香港、台湾等等世界上部分国家和地区所实行的一种教育制度,即将教学课程分为文科和理科让学生做出选择后进行分别教育。
文理分科一般是在高一进入高二阶段进行的。虽然实行文理分科,但是不管文、理科都包括语文、数学和英语,所分的科目为政治、历史、地理、物理、化学、生物。
必修科:语文、数学、英语
文科综合:政治、历史、地理、计算机网络应用、技术与设计理论、艺术鉴赏
理科综合:物理、化学、生物、计算机软件应用、技术与设计实践、体育鉴赏
但现行的制度要求文理科在高二会考前仍进行九门科目。但目前这在很多学校只是象征性地保留,也更多只为了应付会考或上级的检查。实际的教学上老师也不太重视,而大部分的学生也轻视这些科目。而在会考或其它的检查之后学校就直接将这些科目从课程表上删除。文科、理科数学上也有所区别。
随着新课程改革的推进,文理分科制度将逐渐被取消。
D. 理科数学高考都考什么内容啊
好多,三角函数,不等式,立体几何,解析几何,导数,积分,函数……
E. 高考理科数学主要考什么题型
全卷包括选择题、填空题、解答题三种题型,
1.选择题是四选一型的单项选择题;
2.填空题每题有一个或多个空,只要求直接写结果,不必写出计算过程或推证过程;
3.解答题包括计算题、证明题和应用题等,解答必须写出文字说明、演算步骤和推证过程。
试题分为必做题和选做题,必做题考查必考内容,选做题考查选考内容,选做题为3选1,考生在试卷给出的3道选做题中选择其中一道作答(3题全答的只计算前一题得分)
F. 高考数学的重点在哪些部分
解答题必考点(17)题(10分)三角函数公式的转化与灵活运用主要体现在正弦定理,余弦定理和基本三角函数化简的综合运用上,属于基础题必拿满分(18)题(12分)统计或者立体几何分析这两题基本上就定位在(18),(19)的位置了统计主要体现在概率的计算和二项展开式属于基础题,必拿满分立体几何分析主要在于课本上的基础概念的掌握和熟练运用第一个问很简单,6分必拿,第二个问基本上可以拿到2~4分,基本上这道题可以拿到10分最后一个也是求线面角或者面面角的问题,这个要求计算能力清晰(20)题(12分)中等偏难函数的求导以及定义域和值域的求解第一个问求导并计算定义域(6分)必拿,第二个问是在对原式的变形上做更多的求解,要用到韦达定理(21)题(12分)解析几何分析难主要是圆锥曲线这一章的考点和函数结合在一起的综合运用需要用到很多知识结合在一起才能快速解答写出韦达定理公式并无错至少得2分基本上大题就是这个方向了,各个地方的出题方式不一样,但大致考点就是考这些,题目写多了自然会懂得在哪一题该用什么知识,联系课本上的基础知识,先把基础知识掌握牢固,有清晰的有条理的解答才能快速答题,不在一时想不通的题目上纠结,考虑1分钟没头绪的题目果断跳下一题.选择题的1~10题都是考基础知识的,11~12题比较难,自己根据自己的知识程度把握解题时间,一般选择题用时20~30分钟,不要把太多时间浪费在选择题上,后面大题前3题还是很简单的.填空题前2题也是比较简单的.关键问题还是把课本上的基础知识,公式,定理掌握牢固,再灵活运用各方面的知识.复读一年的考生纯手打.
G. 数学高考一定会考到哪些内容
高中的主干知识是一定会考的,比如初等函数、初等微积分、数列、概率、立体几何、解析几何等等。最容易拿分的肯定是送分题,比如集合、复数等。但我觉得这么罗列对你一点帮助也没有,自己回去做几份高考真题就都知道了。
H. 2018年高考理科数学考试大纲都有哪些
Ⅰ. 考核目标与要求
根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容.
一、知识要求
知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.
各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.
对知识的要求依次是了解、理解、掌握三个层次.
1. 了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.
这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.
2. 理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.
这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.
3. 掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.
这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.
二、能力要求
能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.
1. 空间想象能力:能根据条件做出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.
空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.
2. 抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.
抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.
3. 推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.
中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.
4. 运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.
运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.
5. 数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.
数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.
6. 应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.
7. 创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.
创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.
三、个性品质要求
个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.
要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.
四、考查要求
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.
1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.
2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.
3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.
对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.
4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.
5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容、体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.
(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.
3. 数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
(十九) 数系的扩充与复数的引入
1. 复数的概念
(1)理解复数的基本概念.
(2)理解复数相等的充要条件.
(3)了解复数的代数表示法及其几何意义.
2. 复数的四则运算
(1)会进行复数代数形式的四则运算.
(2)了解复数代数形式的加、减运算的几何意义.
祝考生们高考取得好成绩!