导航:首页 > 数字科学 > 怎么数学建模

怎么数学建模

发布时间:2022-05-01 19:19:27

A. 如何入门参与数学建模

想要入门参与数学建模,应该做到以下几点:(1)对数学建模有着深厚的兴趣,而不仅仅是为了获奖。数学建模有很多有意思的点,使用自己建立的模型解决了一个实际问题,是很有成就感的一件事情。数学建模中会伴随着编程与论文写作,也是对自己能力提升的一个重要途径。(2)有一定的基础数学知识,包括微积分、线性代数、概率论和数理统计。掌握这些知识并不是说一定要精通,而是起码应该知道一些基本方法,不然很多问题根本没法做分析。(3)逐个学习模型,推荐姜启源的《数学模型》。里面的模型都是一些基础模型,但是基础模型非常重要,比你学习高大上的建模方法还要重要,现在的评委已经不喜欢各种套高大上的方法了。这本书起码要结合案例去看,不需要十分精通,但一定要知道每种问题对应着哪种模型,在比赛期间方便查找,现学现卖。(4)掌握基础的编程和算法,推荐司守奎写的《数学建模算法与应用》,这本书主要内容是matlab,对建模比赛帮助很大。(5)掌握论文写作技巧。论文写作是数学建模竞赛是否获奖的重要因素,可以去参考历年优秀论文,重点学习格式和行文思路。

B. 数学建模怎么做啊

数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。

模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。

模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

C. 怎样学好数学建模

数学建模知识应该具备的数学基础有高等数学、线性代数、概率论与数理统计,在此基础上重点看一下运筹学的书籍。当然,数学建模不仅仅是要求数学知识扎实,还需要参赛者广泛涉猎知识(包括物理、生物、心理学等),因为许多数学建模题目要求背景知识比较深,比如说12年MCM
A题要求画出一棵树,这就需要参赛队员了解某类植物树叶生长具备的特点,涉及生物学知识;第二届MATHORCUP全球数学建模挑战赛A题也涉及到空气动力学知识。因此,数学建模是以数学为基础,综合各门学科(涵盖自然科学和社会科学)的一项赛事。
具备上述基础知识以后,就着重看一些建模方面的书籍,如:赵静和但琦的《数学建模与数学实验》、姜启源和谢金星的《数学模型》、《运筹学》、肖华勇的《实用数学建模与软件应用》。每一本书都有自己的特色,也没必要仔仔细细地把整本书都看完,甚至你可以只知道模型的大致步骤,真正用到的时候再翻书详细了解这个模型。因为数学建模本身就是一个学习的过程,在短短3天时间里,将陌生的知识转化成自己的知识是具有挑战的,更何况还要对模型进行改进,但是正是这样,我们才能不断接触新知识,不断培养自己的学习能力。
熟悉模型之后,基本能够看懂大部分的优秀论文了。个人认为看一些“高教杯”特等奖论文及美赛Outstanding对自己思路、知识、写作能力提升非常快,这些论文一般逻辑性很强,层次感出众。在欣赏优秀论文的过程中,还要注意模型的适用范围,举个例子来说,对于预测类的题目,比较常用的预测模型有时间序列模型、灰色预测模型、贝叶斯预测模型、神经网络预测模型等,这些模型并不是对所有的数据都是适的,有些模型需要先对数据进行剔除、平均等处理,这些细节需要特别注意,一旦不注意就会影响整篇论文的量。
上述三步进行之后,接下来就是实战演练了。参加完后主动找组委会要评语(因为那些评语里记录着你的不足,便于今后改正)。

D. 如何准备数学建模呢 需要做那些准备呢

如何准备数学建模,需要做这些准备。第一,找一本有关建模的基础教程,第二,学会一门数学软件的使用,三,掌握科技论文旋涡状的写作方法。

数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,数学模型或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,数学模型的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
全网招募小白免费学习,测试一下你是否有资格
想要了解数学建模相关学习的更多内容,可以了解一下广州中教在线教育科技有限公司(以下简称:中教在线)。中教在线的课程从零基础开始学习,从简单入门到后期成品出图老师带着你一步一步走过来,毕业后还有就业指导课程,助你解决面试难题,助教老师24小时在线答疑。

E. 数学建模怎么建立模型

1、模型准备

首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

2、模型假设

根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。

3、模型构成

根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。

这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。

4、模型求解

可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

5、模型分析

对模型解答进行数学上的分析。能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论哪种情况都需进行误差分析,数据稳定性分析。


6、模型检验

把数学上分析的结果翻译回到现实问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性。

7、模型应用

取决于问题的性质和建模的目的。

F. 如何入门数学建模呢我大一可以说是很小白的状态了,现在开始学习5.17比赛

本人大三计算机专业,17年电工杯二等奖、MathorCup一等奖、国赛省一等奖、数创杯一等奖,奖项很水,但有必要介绍一下我参加建模的过程,希望对学弟学妹们有所帮助。
本人大一没想过比赛,大二为了我女朋友才跟她组队开始学着参加数学建模,从2017年2月开始上《数学建模》与《数学建模软件》两门选修课,从中对MATLAB有所了解,数学建模课程比较枯燥,仅仅是听过而已。
到2017年4月校赛,开始拿到校赛题目,时长15天,这15天的时间所做的题目是2017年认证杯第一阶段赛题:考研移动端产品的使用与评价,本题有大量数据,曾经高分通过计算机等级考试二级MS Office的我使用EXCEL对数据进行了处理,这起到了很大的作用,第一题是一个因子分析和聚类分析,经过网络得知可以使用SPSS,于是学习了SPSS,这个很好上手,网络相应的方法即可找到教程。
校赛后,拿电工杯和MathorCup练手,电工杯题目是人口预测,用到了leslie模型,MathorCup是共享单车的题目,又是大数据分析,这次直接是EXCEL完成的。
扯了这么多,给大家说一下如何准备数学建模吧。
首先,数学建模比赛一般分为优化类型的题目和数据分析或评价类的题目,需要3-4天提交一篇论文,三个成员需要有一名写手、一名编程人员和一名统筹调度(建模和想思路)人员,这三人的调度和论文撰写工作最好都要熟悉。是对题目的解答,而论文包括:摘要、问题重述、问题分析、模型假设、符号说明、模型的建立与求解、模型的评价、模型的改进与推广、参考文献、附录几大部分,最关键的是摘要,摘要写的不好,论文直接pass掉。
而如果摘要写的还可以,就是论文格式和所用的模型了,三人均需要熟练掌握OFFICE软件,EXCEL可以处理数据,里面的一些公式和函数一定要会,Word也要熟练掌握,尤其是其中的mathtype公式编辑器,要求所有的公式都需要用公式编辑器输入。编程人员需要熟练掌握Matlab、SPSS、Lingo,都很简单。
对于学习数学建模的方法,大概包括:规划(最优化)、图论、评价、相关性分析、回归等模型,还有一些比较高大上的算法,比如模拟退火算法、神经网络、粒子群算法,这些大多是处理优化问题的,当然神经网络还可以做分类,这些网上都有现成的代码,了解数据输入输出和如何分析结果即可。推荐司守奎老师的《数学建模与应用》一书(侧重实现),还有姜启源老师的《数学模型》一书(侧重原理的讲解)。
多看看优秀论文,注意格式和内容,掌握这些,建模应该不成问题了,祝各位同学好运。

G. 怎样学习数学建模

1、数学建模至少需要你学完高数上下册,概率论与数理统计,线性代数。
2、还要会编程,一般使用的软件有matlab,Eviews,spass等。
3、另外就是要学习论文写作,摘要怎么写,模型的假设怎么写,模型建立过程怎么描述等等。
4、更重要的是,要多看书,学习一些建模的思想,常见的一些模型,比如人口模型,旅行商问题等等。因为你自己建立一个全新的模型是很难的,一般都是引用别人现成的模型,再加以改进或修正,成为你自己的模型。所以没事要多看书,多思考。

H. 怎么学习数学建模

简介:数学建模是利用数学工具解决实际问题的重要手段。数学教育不仅要教给学生数学知识,更要教给学生运用所学知识去解决实际问题。针对专科普系的学清特点教师要善于在教学中把数学的概念法则和解题方法进行模型化,使学生既能掌握数学的基础知识,又能应用数学知识解决生活和生产中出现的问题。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。

I. 数学建模具体有些什么内容如何进行

一、定义
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
二、数学建模的几个过程
模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
模型分析:对所得的结果进行数学上的分析。
模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用:应用方式因问题的性质和建模的目的而异。

J. 数学建模怎么做

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。

阅读全文

与怎么数学建模相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:748
乙酸乙酯化学式怎么算 浏览:1412
沈阳初中的数学是什么版本的 浏览:1366
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:895
数学c什么意思是什么意思是什么 浏览:1424
中考初中地理如何补 浏览:1314
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1404
如何回答地理是什么 浏览:1038
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1495
二年级上册数学框框怎么填 浏览:1715
西安瑞禧生物科技有限公司怎么样 浏览:1011
武大的分析化学怎么样 浏览:1256
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1669
下列哪个水飞蓟素化学结构 浏览:1432
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1073