‘壹’ 大学高等数学的学习方法
1.理解知识点。
高等数学中涉及到的知识点有:定义,定理,公式。
1)定义需要了解些什么?
a)首先,我们要从定义的文字上把握,这个定义的基本含义是什么。
b)其次,了解定义涉及到哪些知识(已经学过的),比如,我们谈到“区域”,那么这个定义和区间是有密切联系的,也和集合具有密切关系,当然还和其他方面相关。我们可以在对比中学习。既要分析相关的概念的相同点或关连的地方,也要注意到不同点或差异的地方。
c)定义需要注意的事项,或定义涉及到的要素。如定义集合,那么需要注意集合中的元素具有确定性,象高个子的同学,由于多高才算是这个集合中很难说清,因而不具备确定性。
d)定义涉及到哪些性质?对这些性质的充分了解,往往可以帮助我们更好地把握定义的真正内涵。
2)定理。a),b),c)与定义注意的地方相同。
d)定理涉及的条件。这点很重要。很多同学没有注意到定理存在的条件,结果在解题中拿着定理到处用,结果往往得出错误的结论。
e)定理要想把握好,一定要做一定的相关题目。这样才可以真正把握其内涵。如果要深入地了解定理,往往还要做一定的涉及到多个定理或公式的题目。需要在实践中领会。如果学了定理,却不能做题目,那么学的知识是死的,这样的知识是没有多少作用的。
3)公式。
有的公式很简单,象导数公式,只要你对导数的定义理解清楚了,那么利用导数公式简直就是和套用乘法公式差不多。
但是有些公式就比较复杂,比如多元微积分中的高斯公式。这些公式与其说是公式,还不过说是定理,对于这样的公式,在学习的时候,我们可以参照上面介绍的定理的学习方法进行学习。
2.消化和巩固知识点。
在这方面,除了做好以上1.中谈到的地方外,最好的办法莫过于做习题了。现在我们不妨就解题方面做一下介绍。
3.解题。
无论是学习初等数学还是高等数学,都离不开解题。但是事实上,很多同学感觉到做了很多题,效果并不佳,为什么呢?
我们认为,
1)首先,要把教材上的题目认真做好。这些题目往往是专门为了消化和理解定义、定理与公式而设计的,这是属于打底子的题目。所以必须每道题目都过关。这些题目往往不是很难,但是在消化和理解基本知识点上起的作用却是不容低估。有些同学恰恰在这方面没有把握好。典型的反面例子有:
a)因为时间紧迫,或者某些题目做不出,结果就抄同学的作业;
b)管他题目作对了还是做错了,先对付一下,把作业交给老师,算是完成了平时作业,这下老师不会扣我的平时分了。
c)不做详细的论证分析,有些题目将题目的答案算出来就算了;有些题目,先是放出风来,说显然是如何如何(其实并不显然),然后宣布原命题成立。
凡此种种,都是不负责任的做法。有些同学也许会说,唉,今天学生部要开会,或者今天老乡来了,总之,今天实在没有时间,明天再补回来吧。事实上,如果今天不能将今天的任务完成,就不要幻想明天可以不仅将明天的工作完成,还能将今天拉下的工作补上。长期下来,拉下的任务越来越多,以后的学习就越困难。
2)解题不能为解题而解题。
有些同学解了一道题目后,以后要是遇到了同样的题目,也许基本还是能做出来的,但是这道题目要是适当改造一下,又不知道怎么做了。这种情况,就属于学而不思的为解题而解题的情形。要想解题起到的效果好,不光是解决了一道题目,而应该将所有类似的题目的解题办法都总结出来。这样,举一反三,就不怕出题目的人变换招式了。我们希望,同学们在解题的时候,一定要多想想,每做一道题目,都考虑一下,这道题目可以归结为什么类型的题目?这样,做一道题目,就相当于解了一类或几类的题目了。
3)开拓视野。
有些同学学得好,往往给出各种怪题目来,都往往可以解出来。为什么?就是他们积累了很多解题的技巧。就好像武打小说中谈到的,有人独创了一种新的武功,以为天下无人能敌,但是某某武林高手,什么样的场面没有见过,于是先以神功封住所有的门户,暗暗观察他的武功套路,终于摸清对方的武功路数,于是一击成功。拿到数学解题方面来说,就是吾同学熟悉了各种解题技巧,于是遍试种种办法,终于发现了破解之法。
怎么才能学到解题技巧呢?一是自己总结。在解题中,多思考,多与以往学习的知识比较对照,往往可以自成一家,获得其他书上很难见到的解题技巧。二是通过书本或者网络资源,获得解题技巧。
掌握的解题技巧越多,就越能对付各种题目。
‘贰’ 大学里应该怎么学习高数
1、书:课本+习题集(必备),因为学好数学绝对离不开多做题;建议习题zhuan集最好有本跟考研有关的shu,这样也有利于你将来可能的考研准备。
2、笔记:尽量有,所说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本, 可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
3、上课:建议最好预习后听听。听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但要记住,高数千万别搞考前突击,绝对行不通,所以平时就要跟上,步步尽量别断层。
4、学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,既要有形象的对它们的理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。
‘叁’ 怎样学好大学数学
首先,老师讲课一定要认真听,作业认真完成,这是学好数学的必要条件,它的重要性已不必多说。另外,学校有时会为学生统一订购一些教学辅导书籍,可充分利用。有些超常学生可以加强学习的深度、广度、但基本功--基础知识万万不可忽视。
其次,要注意效率。不作"重复劳动",每次预复习都要有比较明确的目的。在此,我想提出一点:过多的参考书是毫无必要的。看透一本参考书往往优于"看两本书,却均未看透"的情形。着名数学家华罗庚说过:"读一本书,要越读越薄。"这就是说,要抓住统帅全书的基本线索,抓住贯穿全书的精神实质。
这不禁使我想到,我们现在每一个学生在汲取知识的同时,都在为自己编织一张知识网络,其主要作用是串连所学知识,提高学习效率。知识网络应当编织得疏密得当。太疏了,不能使自己的思维四通八达,纵横恣肆;太密了,会影响主线的清晰度,得不偿失。在此不妨举一例:有一位同学,平时学习极其用功,做的数学题极多,但不去理解主旨,几乎把每本参考书中的每句话都当成重点,以求"滴水不漏"。更可悲的是,在重复劳动之中,他从来不将自己冗长的思维有条理的整理出来,请教老师、同学的一些问题也往往很"低级"--自己脑子稍稍转个弯就行了!由于不分主次地学习,不注重培养解题感觉,他的成绩始终上不去,这就是把书"越读越厚"的后果。数学的解题往往灵活多变,每个人解数学题都有自己的解题思路,提高学习效率。
许多数学题都是耐人寻味的。立体几何使我们了解空间的艺术、数学归纳法让我们领略证明的技巧……中国足球队主教练米卢诺维奇崇尚"快乐足球",那么,我们不妨享受数学,体会数学所带来的乐趣。多思考,多享受,多收获,这就是我说的第三点。平时学习中,必须留相当一部分题目给自己充分思考,尤其是难题,哪怕想它一小时甚至更长的时间。解难题,只要经过充分思考,即使没有做出,整个思维过程也是有价值的。因为难题往往综合较大,能力性较强,对解题者连续发散思维的要求较高,所以解题者往往会有一个长时间的探索过程。在整个探索过程中,解题者不断寻找突破口,不断碰壁,不断调整思维功势,不断进展。与此同时,解题者将自己所学到的不少知识、技巧试用一番,起到了很好的复习效果。解题者也通过做题,检验了自己掌握有关知识的程度,便于为此后的学习定下适当的目标。记得在《中学数学》杂志中有一个不等式证明题,颇有难度。我苦思冥想四个小时,终于得出了一个优于参考解答的解法。这令我欣喜若狂,当然也令我对此类不等式问题有了更深的理解。这里顺便提一下,多思考是培养一个人数学综合能力的好方法,但有些同学往往忽视计算能力,疏于实践。尽管考试可以利用计算器,(竞赛中不能使用,)但计算器并不能完成代数式、解析式、三角式等运算。有的时候同学们解题思路正确,只是计算有误,导致最终出错,这是很可惜的。我不擅长解析几何,其中一个原因就是解析几何的计算量大,如果用的方法不好,计算会更繁琐,更容易出现错误。愿读者和我共同努力,使自己具备过硬的计算能力。
除了以上三点,我想,无论是在学习过程中还是在复习迎考阶段,都要注意心态调整。一次考砸了,原因是多方面的,可能是知识未掌握牢固,可能是解题感觉不到位,可能是前面所说的计算错误,可能是状态不佳,可能是特殊原因,也可能是太想考好以致心态失衡。我觉得一个人的心态不应过度地为考分所影响,要时刻记住,充足的积累是发挥稳定的保证。平时刻苦钻研,考前复习中,抽出时间做一定量的中等难度习题,来提高解题熟练程度,并增强信心。考试时保持平静的心情和兴奋的状态,这样就可能爆发出无穷的能量。当然,在任何时刻,还要记住一句话;"只满足于进步,不满足于成功。"
有的同学知识掌握得不错,苦于发散思维能力不强,对此,可针对性地购买一些有关发散思维的同步辅导书籍。(注:本人对书市不甚了解。)我觉得同学们不妨逆向思维,改编甚至自编一些题目,并自己解答。一来可以复习已做过的题目,使自己在解决类似问题时更能熟练应对;二来可以探索性地研究,细微的条件变化能否或如何影响解题过程:此外,还可以初步领略命题思想,以此拓广思路,深化解题思想。
编题目让你更容易举一反三。尽管编一道新题往往比解一道习题困难数倍,但通过编题过程中的发散思维所得到的收获,也往往比做十道题都大。适当抽出少量时间编解题目,也是一个不错的探索学习的方法。
以上是我的学习心得,仅供参考。有一点需要说明,各人因其不同情况,在无形之中已逐步形成一个适合自己的学习方法,只需适当调整无须刻意改变。其实学数学和学其它学科是可以相互借鉴的。一句话:只要肯动脑筋,事情能做好。
进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。
一、 高中数学与初中数学特点的变化
1、数学语言在抽象程度上突变
初、高中的数学语言有着显着的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。
2、思维方法向理性层次跃迁
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
3、知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。
4、知识的独立性大
初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。
二、如何学好高中数学
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施
² 记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中
拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
² 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再
犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
² 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化
或半自动化的熟练程度。
² 经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,
使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
² 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课
外题,加大自学力度,拓展自己的知识面。
² 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩
固,消灭前学后忘。
² 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解
题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
² 经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学
思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
² 无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而
不是一味地去追求速度或技巧,这是学好数学的重要问题
‘肆’ 怎么提高大学数学成绩
身为文科生的我对于数学有着千丝万缕的感触,数学是一直让我头疼的学科。上到了大学所选的专业也是要学习数学,依然摆脱不了被数学支配的恐惧。那怎么办?那只能 “投机取巧”了,适用了很多的数学方法,我依然觉得掌握对的方法是非常有必要也是非常重要的。从班上的数学学霸身上我薅到了学霸的数学学习方法,哈哈哈,用了学霸的方法之后成绩真的有显而易见的提升!so,我想把这个实用的方法分享给大家,希望对想学好数学的小伙伴们有帮助噢~
第一、就是要做错题本!
学生党一定要有错题本!
不要觉得上到大学就什么笔记本错题本都不需要了,其实不然,学习工具用的好关键时刻助你跑。学霸每学期都会整理出很多很多的数学错题,大考前都会翻翻看一看的。这个习惯真的受益终身,对于学数学。错题本里不止有错题,还可以包括老师上课讲的做题方法,自己做题摸索出来的规律,模型等等,考前翻一翻对自己帮助非常大。(可以买分页的活页本,把几个板块分隔开,便于找到你想看的东西)
翻一翻对自己帮助非常大。(可以买分页的活页本,把几个板块分隔开,便于找到你想看的东西)
‘伍’ 大学数学怎么学
大学数学较高中要难,因此我也在课上课下、社团招新的时候无数次听到有人说自己不是学数学的料,没有学习数学的天赋(笔者为数学专业,同时参与数学社团工作)。在这里,我想告诉各位自诩“数学天赋差”的同学,数学差不是由基因决定的。人类经历了漫长的进化达到现在的阶段,与其他物种的最大区别就在于我们有进化或者说适应环境的能力。对于一个英语差的人,要提升他的英语能力不需要让他经历几百年的自然选择,只需要告诉他英语六级不过的话就没法毕业即可。
因此,数学差的主要原因还是在于学习时间不足以及学习方式的不当。当我们在一门学科中投入大量时间后,必然会对该科目的学习有一定的见解。就我而言,我政治一直不好,从初中开始就不好,但不能说我没学政治的天赋,是因为我不喜欢政治的学法,没有养成反复背诵记忆的习惯。同理,我们可以说自己学不好数学是因为不喜欢数学,没有在初高中掌握好的学习方法,但万万是不能归因于天赋或者基因的问题。当然,有的人既能学好数学,又能学好政治、经济、法律等科目,那是因为他拿别人打游戏的时间去学习掌握背诵技巧了;也有的人既学不好数学,又学不好政治、经济、法律等科目,那是因为他不仅拿大家打游戏的时间去打游戏了,而且还拿本该学习数学的时间去打游戏了。所以我们是要当哪种人呢?
数学的重要意义
数学是一切科学的基础,一切科学,包括人文社科与自然科学,都离不开数学。当然,例如政治、法律等科目似乎没有合理的数学模型构造,但我觉得那是它们自己的问题应该加以认真反思才行,没有数学基础的科学就像没有人投钱的项目或者单纯被贪官奸商拿出来圈钱的项目,或许有且能够存在下去,但也该思考一下自己为啥这么菜了。
我们学习数学,其实就是在学习自己的专业课。如果在大学的学习过程中发现自己的专业课与数学结合的不够紧密,产生了数学对专业课不重要的错觉,那么,怎样让数学与自己的专业课紧密结合就是我们每个人应该思考的问题。
现代数学框架体系的构建
集合论:现代数学的共同基础
现代数学有数不清的分支,但是,它们都有一个共同的基础——集合论,因为它,数学这个庞大的家族有个共同的语言。集合论中有一些最基本的概念:集合,关系,函数,等价,是在其它数学分支的语言中几乎必然存在的。对这些简单概念的理解,是进一步学习别的数学分支的基础。
在集合论的基础上,现代数学有两大家族:分析和代数。至于其它的,比如几何和概率论,在古典数学时代,它们是和代数并列的,但是它们的现代版本则基本是建立在分析或者代数的基础上,因此从现代意义说,它们与分析和代数并不是平行的关系。
分析:在极限基础上建立的宏伟大厦
分析从微积分开始发展起来,牛顿莱布尼兹发明了它,柯西等人将它发展成了一种严密的语言(虽然没有完全解决,比如对不连续函数的可积问题没能给出方案)。
之后,在极限思想的支持下,实数理论在这个时候被建立起来,它的标志是对实数完备性进行刻画的几条等价的定理(如柯西收敛,确界,区间套等)。随着对实数认识的深入,如何测量“点集大小”的问题也取得了突破,勒贝格创造性地把关于集合的代数,和外测度的概念结合起来,建立了测度理论(Measure Theory),并且进一步建立了以测度为基础的积分——勒贝格积分。在这个新的积分概念的支持下,可积性问题变得一目了然,实变函数成型。
对于应用科学来说,实分析似乎没有古典微积分那么“实用”——很难直接基于它得到什么算法。但它为许多现代的应用数学分支提供坚实的基础。例如,拓扑学(把分析从实数域推广到一般空间),微分几何(爱因斯坦广义相对论的数学基础)等。
代数:一个抽象的世界
线性代数在代数中处于基础地位,线性代数,包括建立在它基础上的各种学科,最核心的两个概念是向量空间和线性变换。线性变换在线性代数中的地位好比连续函数在分析中的地位,它是保持基础运算(加法和数乘)的映射。
其上有泛函分析(从有限维到无限维),调和分析,李代数等更多内容,调和分析包含的傅里叶分析在工程、物理学中有大量应用。
‘陆’ 怎样学好大学数学,可以考试拿高分
要注意高等数学课程的内容与中学数学的区别与联系,尽快适应高等数学课程的新的教学特点。
严格按照任课老师的要求去做。坚持做到,课前预习,课上听讲,课后复习,认真完成作业,课后对所学的知识进行归纳总结,加深对所学内容的理解,就不难学好高等数学这门课。
有些同学就是掉以轻心,一看高等数学一开始的内容和高中所学内容极其相似就认为自己看看就会了,课也不听,作业也不写,结果导致后面的章节听不懂,跟不上,学期末成绩不理想,甚至不及格。
掌握正确的学习方法 ,比如函数的连续与间断,积分的换元法、分步积分法等一时很难掌握,这就需要反复琢磨,反复思考,反复训练。通过正反例子比较,从中体会,才能从不懂到一知半解再到基本以及熟练掌握。
建议可以看看宋浩老师以及徐小湛老师的课。准备考研以及拔高的话听听张宇的课也不错,李林的题可以多写写。
至于蜂考那些所谓不挂科的网课当作预习或者学渣考前冲刺是可以的,平时拔高还是算了。
‘柒’ 如何学好高等数学
认真听、课后复习和预习、多跟学习好的人请教
高等数学,在大学里面是很多学渣眼中毕业的拦路虎,所以学好高等数学非常的重要,但是如何学好就是其中的关键了,所以建议分成三步走;
第一上课认真听,如何什么东西要是上课不认真听,除非是天生有非凡天赋,可以课后自己一看就懂,不然就老老实实上课做好笔记工作,并且认真听,听不懂也要听,毕竟这个也会让你的脑子留下印象。
高等数学说难也不难,其实什么东西只要认真学都是学得会的,说学不会的都是害怕辛苦,脑子里自动下指令说不而已,只要克服困难,一切都是非常的简单。
‘捌’ 大学数学学不会怎么办
认真听课是第一步,因为在课堂上有老师为我们整理思路,并且串讲知识点,同时在课堂上,如果我们遇到问题可以及时提问,困惑的地方得到立即解答,所以认真听课是最高效的学习方法。课堂也拥有着十分利于学习利于思考的氛围。
其次就是做好笔记,无论是自己学习还是在课堂上跟着老师学习,做笔记都能帮助我们加深记忆,整理思路,数学是一个十分考验逻辑思维能力的学科,所以理清思路十分重要,把课本内容整理成笔记其实是一个把外在灌输的知识内化成自己的思想的过程。
首先 与高中数学不同的是,高等数学各种各样的定义证明超级多,课堂上老师讲课速度也超级快。两节课,100分钟,基本上都是老师在讲,而你只能在底下听。因为课时少,加上内容又那么多,老师不得不飞快的讲,所以只要你一旦开小差,就基本没有继续听下去的信心和能力了。
加之,课堂上老师基本不会给你时间消化和练习,而课后自己会不会练习也还得另说。本要在知识内容方面上了一个档次,又不能多加练习,高数也就自然而然成了众多大学生的噩梦。
‘玖’ 如何才能学好大学数学
1、重视平时的学习很多的学生不注重平时的学习,只是一味的在考试之前做突击,那是很不够的。首先,要重视日常的每一节数学课,上课要积极参与,要主动学习。对老师的讲解、提问、板书及同学的发言都要进行消化,而且自己要积极、大胆地参与到讨论甚至争论之中,还要敢于大胆提出自己独特的想法、见解或疑问,切切实实提高每节数学课的学习效力。其次,要认真完成每一天的课堂作业和家庭作业。作业除按时、按量完成外,还要注意到作业的质量,做到书写,认真,正确率高。如果能做到把每一次作业当做一次考试,把每次的考试当做一次作业,那么,你的考试成绩一定会令人满意的。
2、重视获取知识的过程要提高自己的数学水平,一定要改变“重结论,轻探究;重法则,轻创新”的错误想法。在平时的学习过程中,要认真经历获取知识的全过程,如概念是如何抽象概括的、公式又是如何推导的等,使自己既知道“是什么”,又知道“为什么”“为什么这样做”,通过亲身参与、经历知识获取的过程,培养自己分析问题、解决问题的能力,进而掌握科学的学习方法,提高自己的自学能力。
3、重视能力的培养要提高自己的数学水平,一定要改变“重分数,轻能力”的错误想法。对每一位学生而言,分数只是暂时的,而能力则是陪伴你一生的,因此在平时的学习中要重视自己能力的培养,防止死记硬背、生搬硬套。要学会分析问题、解决问题,注意思维的准确性、深刻性以及广阔性和灵活性。同时,还要有意识地培养自己的应变能力、逆向思维的能力和创造能力,适当加大一些变式题和逆向思维习题的训练量。
4、重视学习习惯的养成考试成绩的好坏,除了决定于知识的掌握、能力的高低以外,还取决于学生是否具有良好的学习习惯和心理素质。良好的学习习惯除了认真听课的习惯、认真作业的习惯等之外,还应提倡自学的习惯。另外考试也是一门学问,它牵涉到方方面面,如还须有良好的审题习惯、验算的习惯、认真检查的习惯等。同时,具有健康的身体和心理也是获取优秀的考试成绩所必备的条件。这些方面,都是必须引起广大教师、家长和学生充分重视的。
‘拾’ 怎么学好大学数学
如何学好大学数学
1.建立学习目标
大学生的学习比中学生更复杂更高级,同时也更为自觉、更为独立,因此,学习动机的强弱对大学生的学业成就有着极大的影响。在高中阶段,学生以考上大学为惟一的学习目标,目标明确,再加上老师和家长的监督,学习抓得很紧,一旦目标实现,容易产生松懈心理,希望在大学里好好享乐一番。没有及时树立起进一步的学习目标。另一方面大学新生自我控制能力一般较差,容易受别人的影响,有时会有意无意地模仿高年级学生的做法。渐渐便失去了自控能力。
因而大学新生应尽快建立学习目标,以适应大学校园的学习气氛,大学里面的学习气氛是外松内紧的。在大学里很少有人监督你,很少有人主动指导你;没有人给你制订具体的学习目标,每个人都在独立地面对学业,每个人都该有自己设定的目标,每个人都在和自己的昨天比,和自己的潜能比,也暗暗地与别人比。
2.调整学习方法
承袭过去在高中阶段的学习方法,即使勤奋用功可能也难以获得能力的全面提高,这在大学新生里是相当普遍的现象。进入大学后,以教师为主导的教学模式变成了以学生为主导的自学模式。教师在课堂讲授知识后,学生不仅要消化理解课堂上学习的内容,而且还要大量阅读相关方面的书籍和文献资料。可以说自学能力的高低成为影响学业成绩的最重要因素。这种自学能力包括:能独立确定学习目标,能对教师所讲内容提出质疑,会归纳总结所学习的内容,并能表达出来与人讨论。
自学能力是每一个人都必须具备的一种能力。其实在每一个学习阶段都需要有自学能力,只是在不同的教育阶段对自学能力的要求不同。基础教育阶段对自学能力的要求没有那么突出,到了大学是个质的飞跃。课堂学习只是大学学习中很少的一部分,更多的知识要靠自学,老师更多的时候是起到引导的作用。大学更多的是传授学生学习的方法。
从旧的学习方法向新的学习方法过渡,这是每个大学新生都必须经历的过程。在思想上应认识到要想在学业上获得成功,一定要充分利用现有的学习条件,掌握、运用自己所学的知识,提高自己的能力。尽早做好思想准备,就能较好地、顺利地度过这一阶段,少走弯路,减少心理压力,促进学业成绩的提高。
3.如何学好大学数学
大学数学是大学新生普遍反映较难学习的一门课。大学数学与其它课程相比逻辑性强,比较抽象。这里给新生提一点建议:
首先掌握理解与记忆的关系。数学中概念、公式较多,在学习过程中应注意理解,而不应机械地去记忆。要特别注意前后知识的联系,例如极限、连续、导数几个概念都与极限有关,在学习中就应注意它们的联系,应注意它们的相同点和不同点。又如复合函数求导法则,如果你不能理解它的含义,了解复合函数的构造,你即使把公式背的再熟对作题也没有什么帮助。
认真读书与积极动手。课前尽可能的预习,但课后一定要认真复习,独立完成作业。做题过程应看成是检验对知识的掌握。要注意大学数学与中学数学知识的联系。实际上在大学数学里用了很多的初等数学的知识,这一点是很重要的。
做好吃苦的准备。学习是一个很艰苦的事,要适应数学的思维方式,主动克服各种学习困难,不断提高学习兴趣。