① 关于数学排列组合,A什么的C什么的到底怎么算举个例子。。
A开头的叫排列,C开头的叫组合。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。
注:当且仅当两个排列的元素完全相同,且元素的排列顺序也相同,则两个排列相同。例如,abc与abd的元素不完全相同,它们是不同的排列;又如abc与acb,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列。
② 数学中c怎么计算
组合数C(n,m)的计算公式为:
,不管其顺序合成一组,称为从 n 个元素中不重复地选取 m 个元素的一个组合。
③ 组合c的计算公式是什么
C(n,m)=A(n,m)/m。
排列组合c的公式:C(n,m)=A(n,m)/m!。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。
组合C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!。
例如A(4,2)=4!/2!=4*3=12。
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。
A32是排列,C32是组合。
比如A32就是3乘以2等于6。
A63就是6*5*4。
就是从大数开始乘后面那个数表示有多少个数。A72等于7*6*2就有两位A52=5*4。
那么C32就是还要除以一个数比如C32就是A32再除以A22。
C53就是A53除以A33。
④ 数学的排列组合公式C(n,m)的计算
公式中,前面列出三项是要让人看出规律,真正的项数未必有这么多。错误是最后多写了(5-3+1),也就是前面写了 (5-2)后,后面就没有了,因为它就是最后一项 5-3+1 。
排列a与组合c计算方法
计算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。
组合C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!
例如A(4,2)=4!/2!=4*3=12。
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。
排列组合中的基本计数原理
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
(2)第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
(3)分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
⑤ 排列组合中那个C怎么算
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
(5)数学组合c怎么算扩展阅读:
排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
计算公式:
;C(n,m)=C(n,n-m)。(n≥m)
其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。
⑥ 如何计算概率组合C
概率组合C(m,n)的计算公式为:
(6)数学组合c怎么算扩展阅读:
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。
⑦ 概率中的C是什么怎么计算
C表示组合数。
组合,数学的重要概念之一。从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数,这个组合数的计算公式为
(7)数学组合c怎么算扩展阅读
在重复组合中,从n个不同元素中可重复地选取m个元素。不管其顺序合成一组,称为从n个元素中取m个元素的可重复组合。当且仅当所取的元素相同,且同一元素所取的次数相同,则两个重复组合相同。
排列组合计算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
⑧ 排列组合中A和C怎么算啊
排列:
A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合:
C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
(8)数学组合c怎么算扩展阅读:
排列组合的基本计数原理:
1、加法原理和分类计数法
加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。
那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
合理分步的要求:
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
与后来的离散型随机变量也有密切相关。
⑨ 排列组合中的C和A怎么算
排列组合中的C和A计算方法如下:
排列:
A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合:
C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
排列组合注意:
对于某几个要求相邻的排列组合问题,可将相邻的元素看做一个“元”与其他元素排列,然后对“元”的内部进行排列。注意事项: 对于某几个元素不相邻的排列问题,可先讲其他元素排好,再将不相邻的元素在已排列好的元素之间空隙中及两端插入即可。
⑩ 数学排列组合怎么学C和A的公式都是什么意思怎么用
C是组合,与次序无关,A是排列,与次序有关;C的意思就是没有排列,组合到一起就行,与他们的次序没有关系;A的排列,就是有排列顺序。
C是组合,就是给你N个选择,你从中选择出不重复的K个,这就组合,比如说有一周有七天,让你选两天放假,这里有多少种可能的选择就有多少种组合。就以上面这个为例,怎么计算七天选两天,也就是C(7,2)。
(10)数学组合c怎么算扩展阅读:
组合就到这里,接下来是排列组合,排列组合是在组合的基础上多了一个变化,它是有顺序的,比如刚才所说的,一周有七天,让你选两天放假,那么星期六、星期天和星期天、星期六实质上是同一种选择,因为它们没有顺序。
7*6是从7开始乘也就是C7的7,从7往下一共是2项,也就是C7取2的2,比如说如果改成C8取3,那么分子就是3*2*1=6,2这里的分母是2,实际上要分解为2*1,实质上分母就是2的阶乘,CN取K就是K的阶乘,比如说这里是C8取3那么分子就是3*2*1=6。