导航:首页 > 数字科学 > 数学模型怎么做

数学模型怎么做

发布时间:2022-05-09 16:03:43

‘壹’ 怎么建立数学模型

—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.

下面给出建模的—般步骤:
模型准备 首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料.
模型假设 根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.
模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏.
模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术.
模型分析 对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等.
模型检验 把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意.
模型应用 应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是本书讨论的范围。
应当指出,并不是所有建模过程都要经过这些步骤,有时各步骤之间的界限也不那么分明.建模时不应拘泥于形式上的按部就班,本书的建模实例就采取了灵活的表述方式.

‘贰’ 数学建模的七个步骤

数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法。数学建模没有固定的格式和标准,也没有明确的方法,通常有6个步骤:

明确问题
合理假设
搭建模型
求解模型
分析检验
模型解释
1、明确问题

数学建模所处理的问题通常是各领域的实际问题,这些问题本身往往含糊不清,难以直接找到关键所在,不能明确提出该用什么方法。因此建立模型的首要任务是辨明问题,分析相关条件和问题,一开始尽可能使问题简单,然后再根据目的和要求逐步完善。

2、合理假设

作出合理假设,是建模的一个关键步骤。一个实际问题不经简化、假设,很难直接翻译成数学问题,即使可能也会因其过于复杂而难以求解。因此,根据对象的特征和建模的目的,需要对问题进行必要合理地简化。

合理假设的作用除了简化问题,还对模型的使用范围加以限定。

作假设的依据通常是出于对问题内在规律的认识,或来自对数据或现象的分析,也可以是两者的综合。作假设时,既要运用与问题相关的物理、化学、生物、经济、机械等专业方面的知识,也要充分发挥想象力、洞察力和判断力,辨别问题的主次,尽量使问题简化。

为保证所作假设的合理性,在有数据的情况下应对所作的假设及假设的推论进行检验,同时注意存在的隐含假设。

3、搭建模型

搭建模型就是根据实际问题的基本原理或规律,建立变量之间的关系。

要描述一个变量随另一个变量的变化而变化,最简单的方法是作图,或者画表格,还可以用数学表达式。在建模中,通常要把一种形式转换成另一种形式。将数学表达式转换成图形和表格较容易,反过来则比较困难。

用一些简单典型函数的组合可以组成各种函数形式。使用函数解决具体的实际问题,还比须给出各参数的值,寻求这些参数的现实解释,往往可以抓住问题的一些本质特征。

4、求解模型

对模型的求解往往涉及不同学科的专业知识。现代计算机科学的发展提供了强有力的辅助工具,出现了很多可进行工程数值计算和数学推导的软件包和仿真工具,熟练掌握数学建模的仿真工具可大大增强建模能力。

不同数学模型的求解难易不同,一般情况下很多实际问题不能求出解析解,因此需要借助计算机用数值的方法来求解,在编写代码之前要明确算法和计算步骤,弄清初始值、步长等因素对结果的影响。

5、分析检验

在求出模型的解后,必须对模型和“解”进行分析,模型和解的适用范围如何,模型的稳定性和可靠性如何,是否到达建模目的,是否解决了问题?

数学模型相对于客观实际不可避免地会带来一定误差,一方面要根据建模的目的确定误差的允许范围,另一方面要分析误差来源,想办法减小误差。

一般误差有以下几个来源,需要小心分析检验:

模型假设的误差:一般来说模型难以完全反映客观实际,因此需要做不同的假设,在对模型进行分析时,需要对这些假设小心检验,分析比较不同假设对结果的影响。
求近似解方法的误差:一般来说很难得到模型的解析解,在采用数值方法求解时,数值计算方法本身也会有误差。这类误差许多是可以控制的。
计算工具的舍入误差:在用计算器或计算机进行数值计算时,都不可避免由于机器字长有限而产生舍入误差,如果进行了大量运算,这些误差的积累是不可忽视的。
数据的测量误差:在用传感器、调查问卷等方法获得数据时,应注意数据本身的误差。
6、模型解释

数学建模的最后阶段是用现实世界的语言对模型进行翻译,这对使用模型的人深入了解模型的结果是十分重要的。模型和解是否有实际意义,是否与实际证据相符合。这一步是使数学模型有实际价值的关键一步。

相关阅读

数学模型和数学建模介绍

数学建模常用的

‘叁’ 数学模型的建立

在建立氮在土壤中运移转化的数学模型时,考虑到在众多不同形态氮中,只有

才能为作物直接吸收;同时,氮的淋溶损失主要以

的形式进行,故选择

作为研究对象。由于氮在土壤中运移转化受土壤水分含量和运移的影响,因此,需建立水分运动和

运移转化的联合数学模型。施肥灌溉(降雨)条件下,0~4m土层中水分运动和

运移转化的联合数学模型如下:

一、土壤水分运动模型

模型中考虑根系吸水,上边界条件为二类边界,土壤水分运动的数学模型如下:

区域地下水演化过程及其与相邻层圈的相互作用

θ=θi(z) t=0,z > 0

区域地下水演化过程及其与相邻层圈的相互作用

θ=θa t > 0,z=4

式中:θ为土壤水体积含水率(cm3/cm3);t为时间变量(d);z为垂向空间坐标(cm,向下为正);Dw(θ)为非饱和土壤水分扩散度(cm2/d);K(θ)为非饱和土壤导水率(cm/d);Sw(t,z)为根系吸水强度[单位时间内作物根系从单位体积土体中的吸水体积(1/d)];θi(z)为初始土壤剖面含水率分布函数;R(t)为二类边界上灌溉或降雨强度(cm/d);Es(t)为二类边界上蒸发强度(cm/d)。

二、

运移转化模型

模型中考虑吸附、矿化、氨化、硝化和根吸。

的硝化过程为

,但是一般土壤中

含量很低且难于积累,

很快变为

,故将硝化过程简化为

,并且硝化作用不仅发生在液相中,而且发生在吸附相中;土壤对

的吸附符合线性等温方程:S=kDC;有机氮的矿化用零级动力学方程描述,氨化、硝化作用和根吸用一级动力学方程描述(张瑜芳等,1997)。

区域地下水演化过程及其与相邻层圈的相互作用

φ1=ρk1(z)CN(z)(θ)-kv(z)θC1-k2〔θC1+ρkD(z)C1〕-k4SwC1

C1=C1i(z) t=0,z > 0

区域地下水演化过程及其与相邻层圈的相互作用

C1=C1a t > 0,z=4

式中:C1为土壤溶液中

的浓度(mg/L);ρ为土壤干容重(g/cm3);Dsh(θ,q)为水动力弥散系数(cm2/d);q为达西流速(cm/d);S为土壤颗粒对

的吸附量(μg/g);kD为土壤对

的吸附系数(无量纲);C1i(z)为初始土壤剖面

浓度(mg/L);C1R(t)为土壤入渗水中的

浓度(mg/L);φ1为源汇项(μg/cm3·d);k1为有机氮矿化速率常数(1/d);CN(z)为土壤有机氮矿化潜势(μg/g);kv(z)为

氨化速率常数(1/d);k2

硝化速率常数(1/d);k3

作物根系吸收系数(无量纲);C1a为下边界土壤淋滤液中的

浓度(mg/L)。

三、

运移转化模型

考虑硝化、反硝化和根系吸收,其中反硝化作用也采用一级动力学方程描述:

区域地下水演化过程及其与相邻层圈的相互作用

φ2=k2〔θC1+ρkD(z)C1〕-k3θC2-k4Sw(t,z)C2

C2=C2i(z) t=0,z > 0

区域地下水演化过程及其与相邻层圈的相互作用

C2=C2a t > 0,z=4

式中:C2为土壤溶液

浓度(mg/L);C2R(t)为土壤入渗水中的

浓度(mg/L);φ2为源汇项(μg/cm3·d);k3

反硝化速率常数(1/d);C(z)为土壤入渗水中2i

浓度(mg/L);C2a为下边界土壤淋滤液中的

浓度(mg/L);其余符号意义同前。

‘肆’ 数学建模的步骤

数学建模的主要步骤:

第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建

模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以

高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应

尽量使问题线性化、均匀化。

第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间

的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老

人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱

大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工

具愈简单愈有价值。

第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,

特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计

算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作

出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差

分析,数据稳定性分析。

数学建模采用的主要方法有:

(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模

型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策

等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。

(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型

1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。

(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状

态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构


3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的

可能变化,人为地组成一个系统。
希望能解决您的问题。

‘伍’ 数学建模怎么做啊

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。

‘陆’ 数学建模怎么入门

数学建模入门方式如下:

①先看看书,最好一本国内的,一本国外的,数学建模书--推荐(数学建模(原书第4版)作者:(美)Brooks R. Cole William P.Fox Steven B. Horton Maurice D.Weir 叶其孝 姜启源 译),姜启源,编的那本可以)。--学习相关的软件和数学方法(MATLAB、Lingo、SAS等)--看些历年的题--做一些老题。
②如果参加数学建模竞赛,一定要分工明确,安排好各个环节大家的工作,而且要有领头的人,很多问题难以确定时,需要有人拍板的。
③参加国内赛,论文和解题的思路还是要比较严谨一些的好,解题的各个环节基本都要有,要比较完整才能得高分;美国赛就要尽情的放开思路,把奇思妙想都放进去,一些想法建立的模型复杂难解也没有关系,可以提出解题思路即可。全网招募小白免费学习,测试一下你是否有资格。

想要了解关于数学建模方面的更多内容,可以了解一下广州中教在线教育科技有限公司(以下简称:中教在线)。成立于2010年2月,是国内从事互联网技能教商培训机构,生打3D建模、原画绘制、影视后期及设计类在线学习课程,为零基础入门学员提十全面立体的系统学习成长解决方案,致力于国内线上教育电业已有多年。

‘柒’ 数学建模怎么做啊

数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。

模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。

模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

‘捌’ 数学建模怎么回事,要怎么做

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。。。
按照本人参赛经历,觉得数学建模是个好东西,很值得你去参加。。对于个人的提高,自主创新能力很有提高。。。一般来说,是三个人一个小组,男女混合是最好的。。其中三人,一人熟悉软件的使用,一人文笔功底较强大,一人最好是综合型的人才。。。这东西,数学不一定要好。。。希望你满意。。。

‘玖’ 数学建模怎么做

这个问题比较大,概括来说,数学建模一般要先从实际问题中抽出一个基本数学模型,然后运用数学软件去求解。常用的软件有Matlab、Lingo、Spss三个,第一个一般用来做基本运算,第二个用来解决优化模型的题目,第三个则适用于大数据量的数据统计。至于基本模型,太多了,建议你去看看姜启源的《数学模型》,或者去找些韩中庚的教材也好。

‘拾’ 建立数学模型的方法和步骤

第一、 模型准备 首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 第二、 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 第三、 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 第四、模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 第五、模型分析 对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不"。能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

阅读全文

与数学模型怎么做相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:747
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1366
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1423
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1403
如何回答地理是什么 浏览:1037
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1714
西安瑞禧生物科技有限公司怎么样 浏览:1008
武大的分析化学怎么样 浏览:1256
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1669
下列哪个水飞蓟素化学结构 浏览:1431
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1073