Ⅰ 小学数学计算中的规律有哪些
小学数学计算中的规律有哪些
小学数学运算定律
✍ 加法交换律
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
✍ 加法结合律
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
✍ 乘法交换律
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
✍ 乘法结合律
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
✍ 乘法分配律
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
✍ 减法的性质
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
运算法则
✍ 整数加法计算法则
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
✍ 整数减法计算法则
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
✍ 整数乘法计算法则
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
✍ 整数除法计算法则
先从被除数的高位除起,除数是几位数,就看被除数的前几位; 如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。
✍ 小数乘法法则
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
✍ 除数是整数的小数除法计算法则
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
✍ 除数是小数的除法计算法则
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
✍ 同分母分数加减法计算方法
同分母分数相加减,只把分子相加减,分母不变。
✍ 异分母分数加减法计算方法
先通分,然后按照同分母分数加减法的的法则进行计算。
✍ 带分数加减法的计算方法
整数部分和分数部分分别相加减,再把所得的数合并起来。
✍ 分数乘法的计算法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
✍ 分数除法的计算法则
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
Ⅱ 数学计算的规律有哪些
谈数学解题的规范
解题是深化知识、发展智力、提高能力的重要手段.规范的解题能够养成良好的学习习惯,提高思维水平.在学习过程中做一定量的练习题是必要的,但并非越多越好,题海战术只能加重学生的负担,弱化解题的作用.要克服题海战术,强化解题的作用,就必须加强解题的规范.
解题的规范包括审题规范、语言表达规范、答案规范及解题后的反思四个方面.
一、审题规范
审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分.
(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示.
目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标.
(2)分析条件与目标的联系.每个数学问题都是由若干条件与目标组成的.
解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标.
(3)确定解题思路.一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁.用哪些联系解题,需要根据这些联系所遵循的数学原理确定.解题的实质就是分析这些联系与哪个数学原理相匹配.有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因.
二、语言叙述规范
语言(包括数学语言)叙述是表达解题程式的过程,是数学解题的重要环节.
因此,语言叙述必须规范.规范的语言叙述应步骤清楚、正确、完整、详略得当,言必有据.数学本身有一套规范的语言系统,切不可随意杜撰数学符号和数学术语,让人不知所云.
三、答案规范
答案规范是指答案准确、简洁、全面,既注意结果的验证、取舍,又要注意答案的完整.要做到答案规范,就必须审清题目的目标,按目标作答.
四、解题后的反思
解题后的反思是指解题后对审题过程和解题方法及解题所用知识的回顾节思考,只有这样,才能有效的深化对知识的理解,提高思维能力.
(1)有时多次受阻而后“灵感”突来.不论哪种情况,思维都有很强的直觉性,若在解题后及时重现一下这个思维过程,追溯“灵感”是怎样产生的,多次受阻的原因何在,总结审题过程中的思维技巧,这对发现审题过程中的错误,提高分析问题的能力都有重要作用.
(2)这些方法的熟练程度密切相关,学生在解题时总是用最先想到的方法,也是他们最熟悉的方法,因此,解题后反思一下有无其它解法,可使学生开拓思路,提高解题能力.
Ⅲ 初中数学所有规律
http://wenku..com/view/24450a8e84868762caaed547?fr=prin
你看看,里面是我自己用的资料,我是去年中考的,其中这个资料里面的红体字部分是我自己找的圆的定理很实用的,我一个同学和我一班的,定理记住之后中考考了118分,他以前都是100分左右的,我考了120
Ⅳ 数学找规律
代数中的规律“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。 找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。例1 观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是___。”分析:解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。 我们把有关的量放在一起加以比较: 给出的数:0,3,8,15,24,……。 序列号: 1,2,3, 4, 5,……。
平面图形中的规律:图形变化也是经常出现的。作这种数学规律的题目,都会涉及到一个或者几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。所以,抓住了变量,就等于抓住了解决问题的关键。
Ⅳ 数学问题
数学题,可以分为两大类,一类是应用数学规律题,一类是发现数学规律题。应用数学规律题,指的是需要学生应用以前学习过的数学规律解答的题目。发现数学规律题,指的是与学生以前学习的数学规律没有什么关系,需要学生先从已知的事物中找出规律,才能够解答的题目。学生所做数学题,绝大多数属于第一类。
由于发现数学规律题,能够增强学生的创造意识,提高学生的创新能力。因此,近几年来,人们开始逐渐重视这一类数学题。尤其是最近两年,全国多数地市的中招考试,都有这类题目。研究发现数学规律题的解题思想,不但能够提高学生的考试成绩,而且更有助于创新型人才的培养。
一、 要善于抓主要矛盾
二、 要抓题目里的变量
三、 善于比较
“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是 。”
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。
序列号: 1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。
如果题目比较复杂,或者包含的变量比较多。解题的时候,不但考虑已知数的序列号,还要考虑其他因素。
譬如,日照市2005年中等学校招生考试数学试题“已知下列等式:
① 13=12;
② 13+23=32;
③ 13+23+33=62;
④ 13+23+33+43=102 ;
…… ……
由此规律知,第⑤个等式是 .”
这个题目,在给出的等式中,左边的加数个数在变化,加数的底数在变化,右边的和也在变化。所以,需要进行比较的因素也比较多。就左边而言,从上到下进行比较,发现加数个数依次增加一个。所以,第⑤个等式应该有5个加数;从左向右比较加数的底数,发现它们呈自然数排列。所以,第⑤个等式的左边是13+23+33+43+53。再来看等式的右边,指数没有变化,变化的是底数。等式的左边也是指数没有变化,变化的是底数。比较等式两边的底数,发现和的底数与加数的底数和相等。所以,第⑤个等式右边的底数是(1+2+3+4+5),和为152。
四、要善于寻找事物的循环节
五、要抓住题目中隐藏的不变量
六、要进行计算尝试
Ⅵ 高中数学中 函数图像的变化规律
主要就是利用左加右减,上加下减来进行
如y=x^2怎样变化得y=2x^2+3x+7
可以先配方y=2x^2+3x+7=2(x+3/2)^2+7-9/2=2(x+3/2)^2+5/2
所以可以由y=x^2先横坐标不变。纵坐标变为原来的2倍得到y=2x^2
然后再把y=2x^2的图像向左平移3/2个单位得到y=2(x+3/2)^2
再向上平移5/2个单位可得到y=2(x+3/2)^2+5/2
还有就是指数函数,y=a^x当a>1是函数是增函数,当0<a<1时函数为减函数(对数函数也是一样的。
幂函数,不是很好说,这要画图,只要a是正的,都是增函数。幂函数图象有哪些规律呢?
1.第一象限内图象类型之规律(如图1):1.n>1时,过(0,0)、(1,1)抛物线型,下凸递增。2.n=1时,过(0,0)、(1,1)的射线。3.0<n<1时,过(0,0)、(1,1)抛物线型,上凸递增。4.n=O时,变形为y=1(x≠0),平行于x轴的射线。5.n<0时过(1,1),双曲线型,递减,与两坐标轴的正半轴无限接近。
三角函数,你只要牢记课本里的基本图形,记住它的平移方法就可以了。
下面是幂函数图像,画得不好,你将就着看啊。
Ⅶ 数学规律有哪些
数学规律:
一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。
二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。
三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。
四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。取尾数列一般具有相加取尾、相乘取尾两种形式。
五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。
Ⅷ 数学的规律是什么
问这个问题前,先学习一下数学史。
数学是规律吗?
答案是是,因为数学最终可以衡量甚至预测所有的事情,现在不能只是因为我们不能,因为现在的数学还停留在“数”上。
但是我希望并认为不是,因为我不想否认人类在其中扮演的角色,不想否认生命的意义。
你知道宇宙?
你认为宇宙只是你肉眼看到的实质存在的事物吗?
由基本元素构成,可以在各种“方向”不断扩展,并最终会回归本源的我认为都可称为宇宙。我们的大脑就可以称为一个小宇宙,一花一草一木一世界。
我看过一些关于数学史的书之后,便发现现在的所有理论都是由最基本的公理逐步推出来的,只要我能够理解加减乘除的概念,我就可以理解绝大多数的数学理论,并应用;
你觉得你会用加减乘除吗?
在你每一次应用数学知识的时候,无论是在哪一个学科,你仔细回想你思考的过程,例如计算面积S=ab,假设a=2m,b=2m,我在计算的时候,都是先算2*2,然后加上单位,为什么要这样,因为我只会这样算,但是事实上,这里面有更高级的概念,因为如果仅仅有这种程度,先人是根本想不到用乘法的,至少如果我生活在一个只有整数的时代,我是无论如何也理解不了小数的存在。
面积的乘法便是2m*2m。
在解释之前,也说一下数的概念?1为什么是1,2为什么是2,1+1为什么等于2?
1是1 unit,一个标准。例如1个,1m,1kg;都是先定义了1 unit定义才有后面的扩展。而2,3……便是相对于1unit 的比例,如2m,便是相对于1m的2倍关系。1+1=2;比如你拿了一个石头,又拿了一个,手里共有两个,你为什么有二的概念,因为手里的数量是相对于1个比较出来的。没有了1,便没有了比较,后面无从谈起。
所以整数到小数的过度应该经历许多波折。
像这种比例得到的数的关系,是一维思维。
然后我说的乘法便是二维思维,现在我正在理解,说不清楚,现在你所学的乘法运用也仅仅是比较而已,得到的结果和1m^2进行比较得到4,便是4m^2; 但是可以不仅仅如此,可以直接在大脑运算2m*2m, 而不需要中间过渡计算,说不清楚,你自己体会。
数可以在“数”和“量”上衡量这个宇宙,也就是只要有了相应的概念,数学所表达的便是这个宇宙,是一种映射或称为变换最好,宇宙是由规律的,除非真有上帝存在.
所以数学也是有规律的;
然而这个宇宙有生命存在,可能我们的存在或许就是一堆外星人的数据,也可能地球只是猪圈,但是至少就算不是人类,只要有生命,这个宇宙便有了随机性,可能性。
至少我不希望自己的人生可以因为一堆数据而预测。
(以上纯属个人见解,就是因为像这种胡思乱想,我才变得废了,好好学习,思考是人类唯一的意义)
Ⅸ 生活中存在的数学规律有哪些
什么数学规律,举个例子,范围太广了,
两点之间直线最短
还是买彩票算概率
Ⅹ 高中数学必须记住的一些规律有哪些
三角函数公式,余弦定理,正弦定理,如果学理的话一定要学会用空间向量,还有导数的公式,圆锥曲线(椭圆、双曲线、抛物线)的公式、定义、离心率、准线方程等