导航:首页 > 数字科学 > 数学建模模型怎么建立

数学建模模型怎么建立

发布时间:2022-05-12 06:16:52

A. 数学建模怎么入门

数学建模入门方式如下:

①先看看书,最好一本国内的,一本国外的,数学建模书--推荐(数学建模(原书第4版)作者:(美)Brooks R. Cole William P.Fox Steven B. Horton Maurice D.Weir 叶其孝 姜启源 译),姜启源,编的那本可以)。--学习相关的软件和数学方法(MATLAB、Lingo、SAS等)--看些历年的题--做一些老题。
②如果参加数学建模竞赛,一定要分工明确,安排好各个环节大家的工作,而且要有领头的人,很多问题难以确定时,需要有人拍板的。
③参加国内赛,论文和解题的思路还是要比较严谨一些的好,解题的各个环节基本都要有,要比较完整才能得高分;美国赛就要尽情的放开思路,把奇思妙想都放进去,一些想法建立的模型复杂难解也没有关系,可以提出解题思路即可。全网招募小白免费学习,测试一下你是否有资格。

想要了解关于数学建模方面的更多内容,可以了解一下广州中教在线教育科技有限公司(以下简称:中教在线)。成立于2010年2月,是国内从事互联网技能教商培训机构,生打3D建模、原画绘制、影视后期及设计类在线学习课程,为零基础入门学员提十全面立体的系统学习成长解决方案,致力于国内线上教育电业已有多年。

B. 数学建模中量化分析模型怎么建立

用以下几种方法的一种或几种结合使用:湿法分析直读光谱(OES),电感耦合等离子体放射光谱(ICP-AES),电感耦合等离子体质谱仪(ICP-MS),原子吸收光谱(AAS)。

量化模型,是把数理统计学应用于科学数据,以使数理统计学构造出来的模型得到经验上的支持,并获得数值结果。这种分析是基于理论与观察的并行发展,而理论与观测又通过适当的推断方法而得以联系。

如果把证券市场看作一个病人的话,每个投资者就是医生。但中医与西医的诊疗方法不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,定性程度上大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。

量化投资更像是西医,依靠模型判断,模型对于定量投资者的作用就像CT机对于医生的作用。在每一天的投资运作之前,投资者会先用模型对整个市场进行一次全面的检查和扫描,然后根据检查和扫描结果做出投资决策。

被尊为“股神”的沃伦.巴菲特,他在过去的40年间,平均每年的收益率21%左右,而期间标准普尔500指数年均增长率是10%左右,他的收益只是指数的二倍。

因为他注重的是长线操作的定性投资,只靠个人的经验和智慧来判断买卖股票。而美国对冲基金经理、哈佛大学数学教授詹姆斯.西蒙斯,他所管理的大奖章基金是从1989年到2006年的17年间,平均每年的收益率到了38.5%,是股神巴菲特的近2倍。

C. 数学建模方法和步骤

数学建模的主要步骤:

第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建

模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以

高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应

尽量使问题线性化、均匀化。

第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间

的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老

人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱

大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工

具愈简单愈有价值。

第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,

特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计

算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作

出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差

分析,数据稳定性分析。

数学建模采用的主要方法有:

(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模

型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策

等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。

(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型

1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。

(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状

态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构


3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的

可能变化,人为地组成一个系统。

D. 如何准备数学建模呢 需要做那些准备呢

如何准备数学建模,需要做这些准备。第一,找一本有关建模的基础教程,第二,学会一门数学软件的使用,三,掌握科技论文旋涡状的写作方法。

数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,数学模型或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,数学模型的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
全网招募小白免费学习,测试一下你是否有资格
想要了解数学建模相关学习的更多内容,可以了解一下广州中教在线教育科技有限公司(以下简称:中教在线)。中教在线的课程从零基础开始学习,从简单入门到后期成品出图老师带着你一步一步走过来,毕业后还有就业指导课程,助你解决面试难题,助教老师24小时在线答疑。

E. 数学建模的七个步骤

数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法。数学建模没有固定的格式和标准,也没有明确的方法,通常有6个步骤:

明确问题
合理假设
搭建模型
求解模型
分析检验
模型解释
1、明确问题

数学建模所处理的问题通常是各领域的实际问题,这些问题本身往往含糊不清,难以直接找到关键所在,不能明确提出该用什么方法。因此建立模型的首要任务是辨明问题,分析相关条件和问题,一开始尽可能使问题简单,然后再根据目的和要求逐步完善。

2、合理假设

作出合理假设,是建模的一个关键步骤。一个实际问题不经简化、假设,很难直接翻译成数学问题,即使可能也会因其过于复杂而难以求解。因此,根据对象的特征和建模的目的,需要对问题进行必要合理地简化。

合理假设的作用除了简化问题,还对模型的使用范围加以限定。

作假设的依据通常是出于对问题内在规律的认识,或来自对数据或现象的分析,也可以是两者的综合。作假设时,既要运用与问题相关的物理、化学、生物、经济、机械等专业方面的知识,也要充分发挥想象力、洞察力和判断力,辨别问题的主次,尽量使问题简化。

为保证所作假设的合理性,在有数据的情况下应对所作的假设及假设的推论进行检验,同时注意存在的隐含假设。

3、搭建模型

搭建模型就是根据实际问题的基本原理或规律,建立变量之间的关系。

要描述一个变量随另一个变量的变化而变化,最简单的方法是作图,或者画表格,还可以用数学表达式。在建模中,通常要把一种形式转换成另一种形式。将数学表达式转换成图形和表格较容易,反过来则比较困难。

用一些简单典型函数的组合可以组成各种函数形式。使用函数解决具体的实际问题,还比须给出各参数的值,寻求这些参数的现实解释,往往可以抓住问题的一些本质特征。

4、求解模型

对模型的求解往往涉及不同学科的专业知识。现代计算机科学的发展提供了强有力的辅助工具,出现了很多可进行工程数值计算和数学推导的软件包和仿真工具,熟练掌握数学建模的仿真工具可大大增强建模能力。

不同数学模型的求解难易不同,一般情况下很多实际问题不能求出解析解,因此需要借助计算机用数值的方法来求解,在编写代码之前要明确算法和计算步骤,弄清初始值、步长等因素对结果的影响。

5、分析检验

在求出模型的解后,必须对模型和“解”进行分析,模型和解的适用范围如何,模型的稳定性和可靠性如何,是否到达建模目的,是否解决了问题?

数学模型相对于客观实际不可避免地会带来一定误差,一方面要根据建模的目的确定误差的允许范围,另一方面要分析误差来源,想办法减小误差。

一般误差有以下几个来源,需要小心分析检验:

模型假设的误差:一般来说模型难以完全反映客观实际,因此需要做不同的假设,在对模型进行分析时,需要对这些假设小心检验,分析比较不同假设对结果的影响。
求近似解方法的误差:一般来说很难得到模型的解析解,在采用数值方法求解时,数值计算方法本身也会有误差。这类误差许多是可以控制的。
计算工具的舍入误差:在用计算器或计算机进行数值计算时,都不可避免由于机器字长有限而产生舍入误差,如果进行了大量运算,这些误差的积累是不可忽视的。
数据的测量误差:在用传感器、调查问卷等方法获得数据时,应注意数据本身的误差。
6、模型解释

数学建模的最后阶段是用现实世界的语言对模型进行翻译,这对使用模型的人深入了解模型的结果是十分重要的。模型和解是否有实际意义,是否与实际证据相符合。这一步是使数学模型有实际价值的关键一步。

相关阅读

数学模型和数学建模介绍

数学建模常用的

F. 数学建模的模型建立过程

一般来讲:我是这个步骤:
目录(可要可不要)
一、摘要 (大概一页)
二、问题重述
三、模型假设
四、符号及变量说明
五、问题分析与模型建立
六、模型求解
七、模型检验(不好检验的可以不要这一步)
八、模型评价(可推广性,优缺点)
九、参考文献
十、附录(部分程序代码等,也可不要这一步)

另外,你自己可以在网上搜一些例子,例如http://wenku..com/view/452e0bc24028915f804dc210.html
望采纳!

G. 建立数学模型的主要目的是什么从方法论上讲,数学建模一般经过哪四个主要步骤

摘要 运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题。

H. 什么是数学建模如何建模

数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。

对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

I. 数学建模怎么做啊

数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。

模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。

模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

J. 数学建模的步骤

数学建模的主要步骤:

第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建

模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以

高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应

尽量使问题线性化、均匀化。

第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间

的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老

人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱

大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工

具愈简单愈有价值。

第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,

特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计

算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作

出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差

分析,数据稳定性分析。

数学建模采用的主要方法有:

(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模

型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策

等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。

(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型

1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。

(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状

态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构


3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的

可能变化,人为地组成一个系统。
希望能解决您的问题。

阅读全文

与数学建模模型怎么建立相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:747
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1364
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1423
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1403
如何回答地理是什么 浏览:1037
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1714
西安瑞禧生物科技有限公司怎么样 浏览:1008
武大的分析化学怎么样 浏览:1256
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1669
下列哪个水飞蓟素化学结构 浏览:1431
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1072