① 数学定义是什么意思
数学定义:是人类为了展示和运用通过已经理解和掌握的在实践中通过观察、记录和总结找出的用指定符号代表自然界各种元素,再经过运算得到结果后来代表自然规律的一种方法.2、作用:理解和掌握这些自然规律最大的作用是预测未来.3、特点:必须通过已经知道的情况才能计算出未知的情况.4、特性:对已经知道的情况必须用指定的符号来表示.5、局限性:只能通过特殊的已知情况计算出特殊的未知情况.6、必然性:通过现有的已知情况永远无法计算出全部的未知情况.7、原因:宇宙是无限大也是无限小的.无限就意味着什么都不存在,神马都是浮云,数学也是,它只是人类自以为是的东西,只对于人类有用.8、举例:圆是360度,怎么来的?居然是根据.嗨,这么多年了才意识到这居然就是数学.9、结论:数学知识和历史一样都只是生物的活动在自然界留下的印记!
② 什么是数学,数学的概念
数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
-------选自<普通高中数学新课程标准>
③ 数学定义有哪些
数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。
④ 数学的定义
数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
⑤ 数学,有定义是什么意思
数学定义是,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来。
数学概念是构成定义的基础。
值得注意的是,定义是一种表述,并非自主认知。
譬如说,定义X=y十Z
⑥ 数学的概念是什么
数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。 数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。 数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。 基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。 词源 数学(mathematics;希腊语:μαθηματικά)这一词在西方源自于古希腊语的μάθημα(máthēma),其有学习、学问、科学,以及另外还有个较狭意且技术性的意义-“数学研究”,即使在其语源内。其形容词μαθηματικός(mathēmatikós),意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。 (拉丁文:Mathemetica)原意是数和数数的技术。 我国古代把数学叫算术,又称算学,最后才改为数学。
知道了吗???
⑦ 数学概念的定义方式有哪些
这种定义法是中学数学中最常用的定义方法,该法即按公式:
“邻近的属+种差=被定义概念”下定义
其中,种差是指被定义概念与同一属概念之下其他种概念之间的差别,即被定义概念具有而它的属概念的其他种概念不具有的属性。
“平行四边形”的定义为:两组对边分别平行的四边形叫做平行四边形。
这是一种给出概念外延的定义法,又叫归纳定义法.
例如,整数和分数统称为有理数;正弦、余弦、正切和余切函数叫做三角函数;椭圆、双曲线和抛物线叫做圆锥曲线;逻辑的和、非、积运算叫做逻辑运算等等,都是这种定义法。
揭示外延的定义方法还有一种特殊形式,即外延的揭示采用约定的方法,因而也称约定式定义方法。例如
就是用约定式方法定义的概念。