㈠ 常用数列求和公式及其推导
1.等差数列
【通项公式】
an=a1+(n-1)d
an=Sn-S(n-1) (n>=2)
【前n项和】
Sn=n(a1+an)/2=n*a1+n(n-1)d/2
2.等比数列
【通项公式】
an=a1q^(n-1)
an=Sn/S(n-1) (n>=2)
【前n项和】
当q≠1时,等比数列的前n项和的公式为
Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q) (q≠1)
3.斐波那契数列
【通项公式】
an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
【前n项和】
Sn=(1/√5)* [((1+√5)/2 )^(n+2)-[((1-√5)/2 )^(n+2)]-1
4.大衍数列
【通项公式】
an=(n^2-1)/2 (n=2k-1,k∈N)
an=n^2/2 (n=2k,k∈N)
【前n项和】
Sn=(n-1)(n+1)(2n+3)/12 (n=2k-1,k∈N)
Sn=n(n+2)(2n-1)/12 (n=2k,k∈N)
㈡ 常用的数列求和公式
前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。
在等差数列中,若Sn为该数列的前n项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。
(2)数学求和公式怎么算扩展阅读:
高考对数列求和问题的考查主要有两种形式:一种是直接利用等差、等比数列的前n项和公式考查等差、等比数列的前n项和的问题;另一种是利用错位相减法、倒序相加法、裂项法、分组求和法考查非等差、等比数列的求和问题。
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。
㈢ 数列求和公式是什么
求和公式
设首项为,
末项为,
项数为,
公差为,
前项和为,
则有:
①;
②;
③;
④,
其中..
当d≠0时,Sn是n的二次函数,(n,Sn)是二次函数的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。
注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。
求和推导
证明:由题意得:
Sn=a1+a2+a3+。。。+an①
Sn=an+a(n-1)+a(n-2)+。。。+a1②
①+②得:
2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]
Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2
Sn==n(A1+An)/2
(a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即A1+An)
2其他结论
首项:
末项:
通项公式:
项数:
公差:
如:1+3+5+7+……99
公差就是3-1
将推广到,则为:
3特殊性质
1.在数列中,若,则有:
①若,则am+an=ap+aq.
②若m+n=2q,则am+an=2aq.
2.在等差数列中,若Sn为该数列的前n项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。求和公式设首项为,
末项为,
项数为,
公差为,
前项和为,
则有:①;②;③;④,
其中..当d≠0时,Sn是n的二次函数,(n,Sn)是二次函数的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。求和推导证明:由题意得:Sn=a1+a2+a3+。。。+an①Sn=an+a(n-1)+a(n-2)+。。。+a1②①+②得:2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2Sn==n(A1+An)/2
(a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即A1+An)2其他结论首项:末项:通项公式:项数:公差:如:1+3+5+7+……99
公差就是3-1将推广到,则为:3特殊性质1.在数列中,若,则有:①若,则am+an=ap+aq.②若m+n=2q,则am+an=2aq.2.在等差数列中,若Sn为该数列的前n项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。
㈣ 求和公式是什么
求和公式是S=(1+n)*n/2,求S实质上是求{an}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。
数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。
(4)数学求和公式怎么算扩展阅读
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
例如:an=2n+n-1,可看做是2n与n-1的和
Sn=a1+a2+...+an
=2+0+22+1+23+2+...+2n+n-1
=(2+22+...+2n)+(0+1+...+n-1)
=2(2n-1)/(2-1)+(0+n-1)n/2
=2n+1+n(n-1)/2-2
㈤ 等比数列求和公式是什么
等比数列求和公式:
(1)q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
(2)q=1时,Sn=na1。(a1为首项,an为第n项,q为等比)
Sn=a1(1-q^n)/(1-q)的推导过程:
Sn=a1+a2+……+an
q*Sn=a1*q+a2*q+……+an*q=a2+a3+……+a(n+1)
Sn-q*Sn=a1-a(n+1)=a1-a1*q^n
(1-q)*Sn=a1*(1-q^n)
Sn=a1*(1-q^n)/(1-q)
(5)数学求和公式怎么算扩展阅读:
等比数列的一些性质:
(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。
(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。
㈥ 等差数列求和公式是什么
等差数列求和公式有:
①等差数列公式an=a1+(n-1)d、
②前n项和公式为:Sn=na1+n(n-1)d/2、
③若公差d=1时:Sn=(a1+an)n/2、
④若m+n=p+q则:存在am+an=ap+aq、
⑤若m+n=2p则:am+an=2ap,以上n均为正整数。
等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2 。等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
㈦ 知道数列通项公式,求和有几种方法。
http://wenku..com/view/56f8346c1eb91a37f1115cbf.html
给个地址,这里有方法,有应用方法的典型例题,很不错的资料,可以下载下来慢慢用~
㈧ 等差数列求和公式求和的计算公式是啥
1、等差数列求和公式:(字母描述)
即若项数为奇数,和等于中间项的2倍,另见,等差中项。
㈨ 数列求和公式
1、等差数列求和公式:
a:等差数列首项
d:等差数列公差
e:等比数列首项
q:等比数列公比
数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。
在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。