1. 初一数学小论文范文题目:我们身边的数学
身边的数学
--------------------------------------------------------------------------------
用天平称物品的学问
??我们先来研究一下只许在天平的一边盘上放砝码,要求一次称出物品重量的情况。
??例如:在天平的一边盘上放砝码,要把1克到3O克整克重的物品,都能一次性地分别称出来,至少要备置几个什么样的砝码?
??要“一次性”称出,又要做到砝码的个数“少”,各个砝码的克数不要相同,能将几个砝码拼凑成要称的重量,就尽量拼凑。
??显然,1克、2克的砝码是不可少的。1+2=3(克),3克的砝码可以不要。利用1克、2克的砝码各一个,无论怎么也不能一次称出4克的重量,必须要有一个4克砝码。有了4克的砝码,再配上1克、2克的砝码,就能分别称出5克、6克、7克的重量来。顺着这个思路,我们模拟天平称物的情况,制得下表:
放置砝码(克)称出物品重量(克)
11
22
3+13
44
4+15
4+26
4+2+17
88
…………
8+4+2+115
1616
…………
16+8+4+230
16+8+4+2+131
??从表中可以看出,称3O克重量的物品时,用了4个砝码;但要分别称出1克到3O克的整克重量的物品时,需准备的砝码应该是5个,即1克、2克、4克、8克、16克,并且利用这5个砝码的最大称重量是1+2+4+8+16=31(克)。
??找一找,l克、2克、4克、8克、16克这5个按从轻到重的顺序排列的砝码之间有什么关系?我们不难发现,相邻的两个砝码的重量,较重的是较轻的2倍。由此可知,只许在天平一边盘上放砝码,并且要求一次性分别称出1克至若干千克整克重的物品,至少需备置的各个砝码的重量,第1个是1克,其余可依次按“2倍法”得出。
密铺的学问
??地砖的形状往往是正方形的,也有长方形的,我们还见过正六边形的地砖。无论是正方形、长方形、还是正六边形的地砖,都可以将一块地面的中间不留空隙、也不重叠地铺满,也就是密铺。还有什么形状的图形可以密铺地面呢?同学们在思考这一问题时总是借助于画出的图形去实验,通过实际观察而得出结论。
??其实用地砖铺地这一生活问题也有数学方面的道理,可以用数学中学到的圆周角是36O度这一知识从理论上分析、解决。
??我们都知道,铺地时要把地面铺满,地砖与地砖之间就不能留有空隙。如果用的地砖是正方形,它的每个角都是直角,那么4个正方形拼在一起,在公共顶点处的4个角,正好拼成一个36O度的周角。正六边形的每个角都是120度,3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是36O度。除了正方形、长方形以外,正三角形也能把地面密铺。因为正三角形的每个内角都是6O度,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是36O度。
??正因为正方形、正六边形拼合以后,在公共顶点上几个角度数的和正好是36O度,这就保证了能把地面密铺,而且还比较美观。
??还有什么形状的图形可以密铺地面呢?你现在会从数学的角度回答这个问题吗?试试看?
2. 数学小论文应该怎么写
数学小论文怎么写
我觉得,我们要在“小论文”上做点文章,要在研究的深入上做点思考,当然这种思考是建立在方法的指导与策略的引领上,而不是越俎代疱。
比如说这次有几位同学写到了“怎样滚得远?”这一内容,但给出的答案都缺少应有的严谨的过程,象实验材料的选定,要选择轻重不一以及体积大小有着一定差距的圆柱体,这样可以增加实验结果的可信度,在实验方案的确定上,可以选择不同角度的斜坡,并在每个坡度上做出相应次数的实验,同时要把每次实验的结果用表格给列举下来,这样,答出的结果就具有了一定的可信性。
比如说“用一副三角板可以画出哪些角”这一内容,也有不少的同学写到,但大家往往是写到了用单一的三角形可以画出哪些角?利用两个三角板之和可以画出哪些角?但接下来却缺少了一些深入的研究。比如说,是不是可以把这些角按大小排个序?再看看相邻两个角的差都是多少?或者这些角都是哪个角的倍数?如果中间有哪个角刚才没能发现(比如说15度),那这个角能否用一副三角板画出来?怎么画?能否提供不同的画图方案?
下面,再举两个例子来分析:
一个学期的成功
我来自贵州,你们知道为什么我要来这儿读书吗?这是爸爸、妈妈对我的寄托和希望,希望我在好的教育条件下能成材,不走他们的老路。为此,他们省吃俭用省下来的钱都给我当学费和生活费,虽然爸妈不和我生活在一起但我知道他们的辛苦。所以我把我的精力全放到了我的学习上,立志要好好学习,为了自己的目标而努力。有时看见别的孩子有爸妈的疼,我好羡慕,想家、想哭……可是自己想想自己也是幸福的,我不是有姐姐和这么多老师的疼爱吗?我想够了。也不知什么原因就一个学期的时间,我就得回贵州了,时间虽短但我会在老师的关怀下珍惜每分每秒使自己各方面的能力得到提升,一个学期的成功促使我步入正轨走向成功。时间是如此的短,我好留恋这里的教室、这里的老师、这里的一切。
应该说,这是一个孩子内心真实的体会,但它绝对不能算是一篇“数学”小论文。从文中我们难以看到一点数学的味道,数学小论文与学生作文的最大区别就在于它的“数学味”,如果没有了这点,那自然就不能称其为“数学小论文”了。
“小富”需要几天才能回家呢?
有一只,叫小富的青蛙,有一天,它和另外一只青蛙从早一直玩到晚上,另外一只青蛙说:“天已经很晚了,我要回家,你也回家吧!”小富说:“知道了,我马上回家去。”虽然小富嘴里答应,但心里却想“反正一样都要回家,还不如再玩一会儿呢!”它玩呀玩,不知过了多长时间了,月亮已经慢慢的升到了空中,小富也玩累了,准备回家,可是天已经很黑了,小黑已经看不清回家的路了,它发现前方隐隐约约有一点白色,近前一看,原来是一个枯井,小富趴在了井边上,慢慢的小富进入了梦乡。
到了早上,小富准备起床时,一只鸟喳的一声,把小富吓了一大跳,它不小心掉入枯井中。枯井周围又没有其他人,小富只好慢慢爬上井口。这枯井有12米,小富白天爬三米,晚上睡觉时又会掉下去两米,同学们猜一猜小富要用几天才爬上去?
这位小作者或许是为了体现趣味性,在前面加了很多的铺垫。从整篇文章看,铺垫的内容占了大半,而下面仅仅抛出一个问题就结束了,连简单的分析也没有,又怎么能算得上是“论文”呢?
静思巧想 化难为易
有些数学题目看上去很难,然而只要我们精心思考,巧妙设计,这些难题目也会变得非常容易。
3. 数学小论文怎么写
一、培养数学学习兴趣在小学数学教学中的重要性
数学是其他自然科学的基础和保证,因此,学好数学对于学生以后其他学科的学习具有非常重要的现实意义.小学数学主要是促进学生在幼年时期接受数学教育,进而为将来的数学学习奠定基石,因此,培养小学生对于数学的学习兴趣显得非常重要.处于7~12岁年龄段的小学生是各项认知技能都在快速发展的阶段和人群.在这一年龄阶段,其学习数学知识的能力会随着其兴趣而得到不同的发展.如果学生因为缺乏学习兴趣,产生厌学心理,就会对其今后的发展造成不可修复的伤害.教育和教学就是培养人和塑造人的一门科学,所以说,好的教育教学是会使得人的全面发展得到增强的.
二、在小学数学教学中培养学生学习兴趣的方法
1.必须要实行的原则
在小学数学教学中培养学生的数学兴趣是一个重要的教学问题,它必须与学生的知识结构一致和协调,符合学生的身心发展和全面发展,那么,我们就必须必须遵循和执行一定的原则:
(1)适应性原则
适应性原则要求在小学数学教育的日常活动中,学习兴趣是关键,那么,我们就需要以此为原则来不用该年龄阶段的知识去引导学生的努力方向.比如说,现在小学阶段,那些小学奥数比赛已经非常流行了.这些所谓的奥数竞赛,不符合小学生的学习阶段和知识结构,很多题目大大超出他们的知识范围.但这在校园里却是一种很普遍的风尚,这种错误的风尚打击了一大部分学生,使他们发出“数学难”的呼声.这样的学习榜样当然值得肯定,但不适宜在推广而后实施,也不利于培养学生学习数学的积极性和兴趣.
(2)发展性原则
发展性原则是为了培养学生学习数学的兴趣来结合社会的生活和学生的身心特点双重因素.那么,启发学生思考的问题要符合学生知识结构,既不能太简单也不能太难,主要是要联系理论知识与现实生活,促进学生的全面发展.此外,让学生在学习过程中既感到有挑战性,又感觉到好玩和有成效.这样,学生在数学课堂上的学习中不但能学到一定的知识,又有了继续学习的欲望和兴趣,为以后的学习和生活打下了良好的基础,是实现促进学生全面发展的教育目的的.
2.所采取的方法
以根本原则为基础,以具体措施为方法来有针对性地达到教学目标.例如:我们在小学数学的教学过程中可以采取趣味性的教学方式,激发学生的学习兴趣.从小学数学的教学学习环境来说分成两个部分,一是课堂教学,二是课外思考和课外作业.在课堂教学中,应该:
(1)每名学生都积极参与
老师在授课的过程中,要以所教知识与学生的现有认知水平为基础,设计师生共同参与的学习模式,让所有学生参与其中,提高其学习的主动性和效率.
(2)不同的成功体验
让每一名学生都有自己对成功的体验,老师通过教学情境的创设来区别对待,并根据学生不同学习程度和学习能力因材施教,这样所有程度的学生都能获得成功的喜悦.数学这一学科具有系统性和连续性,所以说,循序渐进、激励优生和表扬后进生都是可行之策,每一名学生都会体验到自己的成就感来获得喜悦之情,更能激发学生学习的积极性和主动性.
(3)积极表扬和鼓励
小学生具有年龄小和争强好胜的特点以及荣誉感,所以,在教学的活动中,教师要发现学生的闪光点和优点来加以表扬.特别是,在学生取得进步时,教师要及时给予表扬和鼓励,这样就会使得学生们不断保持学习兴趣.
(4)趣味性课堂活动
教师可以组织一些趣味活动.首先是重视直观的教学方法,例如在教授小学一年级“加减法”的时候,可以让同学们自制一些小工具,这样课堂上玩耍的过程中就学会了知识,同时也使学生学习变得直观化和简单化.其次,我们教师在日常的教学中,尽量将一些大家都熟悉的生活场景引入到课堂来,通过生动有趣的故事,在中间穿插一些数学知识,并通过模型、实物等教具,配合多媒体等教育设施,形象而又直观地引导学生去掌握新知识.在课堂外,应该:给学生创造自由的发展空间.因为小学数学学科本身以理解为主,只要在课堂上真正理解消化了,我们可以适当地减少家庭作业.毕竟在如此小的年纪搞题海战术实在不是一件痛快的事.为了保持学生在课堂中的热情和兴趣,尽量不要给学生的课外生活布下阴影.课外作业以质量取胜.适量的人性的家庭作业能够使学生对数学这一重要学科保持持久的正面的重视.所以我们在给小学生布置数学课外作业时,必须对题量和题型做细致的考察.归根到底,作业的意义就是为了发现问题并解决问题,而不是作为惩罚学生的硬性指标.
4. 七年级数学小论文怎么写
数学小论文的几种具体写法
数学小论文通过学生对生活中数学问题的观察和发现,引起学生的好奇心和求知欲,使学生体会到数学贴近他们的生活,从而对数学产生亲切感,激发起他们学习数学的热情和兴趣;通过引导学生对课堂中学习的数学知识进行实践运用,让学生感受到数学的实用性,提高数学学习的实效;通过探究趣味题和智慧题,开拓学生的视野,培养学生思维的灵活性和深刻性。现谈谈数学小论文的几种具体写法
1. 一道数学题的解答。主要是学生对某一道有挑战性的题目简便的或与众不同的解法(包括一题多解)。例如,书后的思考题,奥数题,教师或家长布置的智慧题,数学刊物上的挑战题,平时自己在做题时遇到的有一定难度的题目等。学生通过对这些问题的解决,不但发展了思维,而且体验到一种强烈的成就感,这对他以后数学的学习将是一个巨大的动力。
2. 用数学的眼光去分析现实问题。主要指学生用数学的眼光去观察、计算、分析现实问题,获得一种理性的思考。比如,有学生写道:如果每人每天节约1克水,那全国13亿人口每天可以节约1 300吨水,发出了“人人节约一滴水,沙漠也能变绿洲”的感慨!还有学生写道:如果每个去银行储蓄的人每次都能为“希望工程”捐1角钱的话,全国那么多储蓄点捐到的钱可以资助多少贫困学生实现上学的梦想呀!学生能从这些角度通过数学的计算去思考社会意义,它的价值就能远远超过数学研究本身。
3. 生活中的数学问题。主要用来记录学生在生活中遇到的感兴趣并有亲身体验的有关数学的情境记录。写这种数学小论文的题材特别多,比如,有学生写到了人民币为什么只有1元、2元、5元而没有3元、4元、6元、7元、8元、9元的;再如,有学生写到了他家住的楼房每层有24级楼梯,那么他从1楼到5楼要爬多少级楼梯。这些都是生活中每天要经历的很平常的事,但学生一旦用数学的眼光来观察和思考这些看似平常的生活问题,就在数学和生活之间架起了一座桥梁,能够感受到生活中处处有数学。
4. 课堂上的数学问题。主要指学生在课堂数学学习过程中自己的一些思考和发现。这对学生数学学习非常有帮助,比如,有个学生在学习画三角形的高时,发现书上介绍了锐角三角形和直角三角形的三条高,而钝角三角形只介绍了一条高。她在课后通过自己的思考和尝试,画出了钝角三角形的另外两条高,在得到老师的肯定后,欣喜万分,连忙写下了《我发现了钝角三角形的另外两条高》这篇数学小论文。
5. 数学实践活动中遇到的问题。主要指学生通过自己亲自动手实践,在实践活动的过程中产生的疑惑、获得的启示和得到的结论等。比如,有个学生在教师还没有上实践活动课“可能性”之前,自己看书并根据书上的内容用红、蓝铅笔去摸,自己动手去探索并验证规律,事后写了一篇心得体会,写出了她在动手实践过程中的想法和体会,让她觉得其乐无穷。
6. 数学童话。主要指学生发挥丰富的想象力,用童话的形式(其中包含着数学论述)来记录看到的数学世界。这是语文学科和数学学科一种很好的整合,那种独特的视角,生动的语言描述,让教师耳目一新。
5. 七年级下册人教版数学小论文 700字
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
6. 什么是小论文、 初一数学小论文怎么写
小论文就是篇幅较短的论文。 初一数学小论文应该首先选定一个小研究课题,然后写出自己研究的成果。对于初一学生而言,研究的课题要小,观点必须有自己的研究的独到之处。比如,您对证明两条线段相等经过自己的练习,自己认为获得了一些规律,把这个规律写出来就是一篇小论文啊。当然,论文中必须针对自己发现的规律举例子加以说明。我看至少要5个例子才能使您的论文有说服力。论文千万不要说教太多。开头应该直接说出自己的观点或经验,然后举例子说明。这是很好写的哟。又比如,有个同学的小论文是:已知三角形的两边及其中一边的对角对应相等不能判断这两个三角形全等的一点认识。又比如有一个同学的小论文是:关于一类方程得巧解。等等
7. 初一数学小论文范文
数学小论文一
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
数学小论文二
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国着名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上着名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
数学小论文三
数学是什么
什么是数学?有人说:“数学,不就是数的学问吗?”
这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。
历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”
那么,究竟什么是数学呢?
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。
纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显着特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显着的特征。
高度的抽象性是数学的显着特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。
体系的严谨性是数学的另一个显着特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。
广泛的应用性也是数学的一个显着特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。
各门科学的“数学化”,是现代科学发展的一大趋势。
祝:学习进步!
8. 数学小论文初一的怎么写
初中数学小论文
今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。
想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!
想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!
想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。
我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
9. 初一数学小论文怎么写
初一数学小论文
今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!
想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!
想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!
想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。
我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
数学小论文:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。