❶ 什么是模糊数学
模糊数学是对模糊现象求得精确数学解的一门数学模糊数学就是用精确数学方法解决模糊事物的一种方法有人认为,数学已经进入到模糊数学阶段科学工作者在理解模糊数学的基础上,取得了许多成绩但是,在研究中我们也发现,如果将各个病害的专家,对他所研究的病害的症状和所做的描述,完完全全地继承下来,就形成了在相同症状面前,病病不相等的分值事实上,这样做有时会发生错误的因此,我们提出,“在症状面前,病病平等”的主张,实践证明是切实可行的我们给症状评分的理论根据就是模糊数学的隶属度;我们相信外行能诊病的根据,也是基于模糊数学是处理模糊事物的最好办法没有模糊数学的指导,就不会有数学诊断学
❷ 模糊数学中sup什么意思
.数学符号
数学上用Sup这个记号表示“上确界”,即最小上界.
inf(数学符号)
表示下确界,英文名infimum.
对于函数y=f(x),在使f(x)大于等于M成立的所有常数M中,我们把M的最大值max(M)(即函数y=f(x)的最小值)叫做函数y=f(x)的下确界.
下确界:在所有那些下界中如果有一个最大的下界,就称之为M的下确界.
❸ 什么是模糊分析
模糊是一种数学概念,数学中专门的一门学科叫模糊数学。
基本原理是通过建立集合的隶属函数,把模糊的没有清晰界限的对象划分到不同集合中。
分析有两种意思:一是一个数学分支——数学分析。二是一般的通常意义的分析。
所以模糊分析对应着两种意思:一、建立在模糊集合上的分析学,二、用数学工具对模糊对象的分析(通常是用模糊数学)
❹ 模糊数学是什么能举个例子吗谢谢麻烦告诉我
再举一个例子,我们现在要从一片西瓜地里找出一个最大的西瓜,那是件很麻烦的事。必须把西瓜地里所有的西瓜都找出来,再比较一下,才知道哪个西瓜最大。西瓜越多,工作量就越大。如果按通常说的,到西瓜地里去找一个较大的西瓜,这时精确的问题就转化成模糊的问题,反而容易多了。由此可见,适当的模糊能使问题得到简化。
确实,像上面的“一粒”与“一堆”,“最大的”与“较大的”都是有区别的两个概念。但是它们的区别都是逐渐的,而不是突变的,两者之间并不存在明确的界限,换句话说,这些概念带有某种程度的模糊性。类的,我们说一个人很高或很胖,但是究竟多少厘米才算高,多少千克才算胖呢?像这里的高和胖都是很模糊了。
模糊数学模糊数学是研究现实中许多界限不分明问题的一种数学工具,其基本概念之一是模糊集合。利用模糊数学和模糊逻辑,能很好地处理各种模糊问题。
模式识别是计算机应用的重要领域之一。人脑能在很低的准确性下有效地处理复杂问题。如计算机使用模糊数学,便能大大提高模式识别能力,可模拟人类神经系统的活动。在工业控制领域中,应用模糊数学,可使空调器的温度控制更为合理,洗衣机可节电、节水、提高效率。在现代社会的大系统管理中,运用模糊数学的方法,有可能形成更加有效的决策。
模糊数学这种相当新的数学方法和思想方法,虽有待于不断完善,但其应用前景却非常广阔。
模糊数学是运用数学方法研究和处理模糊性现象的一门数学新分支。它以“模糊集合”论为基础。模糊数学提供了一种处理不肯定性和不精确性问题的新方法,是描述人脑思维处理模糊信息的有力工具。它既可用于“硬”科学方面,又可用于“软”科学方面。
模糊数学由美国控制论专家L.A.扎德(L.A.Zadeh,1921--)教授所创立。他于1965年发表了题为《模糊集合论》(《Fuzzy Sets》)的论文,从而宣告模糊数学的诞生。L.A.扎德教授多年来致力于“计算机”与“大系统”的矛盾研究,集中思考了计算机为什么不能象人脑那样进行灵活的思维与判断问题。尽管计算机记忆超人,计算神速,然而当其面对外延不分明的模糊状态时,却“一筹莫展”。可是,人脑的思维,在其感知、辨识、推理、决策以及抽象的过程中,对于接受、贮存、处理模糊信息却完全可能。计算机为什么不能象人脑思维那样处理模糊信息呢?其原因在于传统的数学,例如康托尔集合论(Cantor′s Set),不能描述“亦此亦彼”现象。集合是描述人脑思维对整体性客观事物的识别和分类的数学方法。康托尔集合论要求其分类必须遵从形式逻辑的排中律,论域(即所考虑的对象的全体)中的任一元素要么属于集合A,要么不属于集合A,两者必居其一,且仅居其一。这样,康托尔集合就只能描述外延分明的“分明概念”,只能表现“非此即彼”,而对于外延不分明的“模糊概念”则不能反映。这就是目前计算机不能象人脑思维那样灵活、敏捷地处理模糊信息的重要原因。为克服这一障碍,L.A.扎德教授提出了“模糊集合论”。在此基础上,现在已形成一个模糊数学体系。
所谓模糊现象,是指客观事物之间难以用分明的界限加以区分的状态,它产生于人们对客观事物的识别和分类之时,并反映在概念之中。外延分明的概念,称为分明概念,它反映分明现象。外延不分明的概念,称为模糊概念,它反映模糊现象。模糊现象是普遍存在的。在人类一般语言以及科学技术语言中,都大量地存在着模糊概念。例如,高与短、美与丑、清洁与污染、有矿与无矿、甚至象人与猿、脊椎动物与无脊椎动物、生物与非生物等等这样一些对立的概念之间,都没有绝对分明的界限。一般说来,分明概念是扬弃了概念的模糊性而抽象出来的,是把思维绝对化而达到的概念的精确和严格。然而模糊集合不是简单地扬弃概念的模糊性,而是尽量如实地反映人们使用模糊概念时的本来含意。这是模糊数学与普通数学在方法论上的根本区别。恩格斯说:“辩证法不知道什么绝对分明的和固定不变的界限,不知道什么无条件的普遍有效的‘非此即彼!’它使固定的形而上学的差异互相过渡,除了‘非此即彼!’,并且使对立互为中介;辩证法是唯一的、最高度地适合于自然观的这一发展阶段的思维方法。
模糊数学产生的直接动力,与系统科学的发展有着密切的关系。在多变量、非线性、时变的大系统中,复杂性与精确性形成了尖锐的矛盾。L.A.扎德教授从实践中总结出这样一条互克性原理:“当系统的复杂性日趋增长时,我们作出系统特性的精确然而有意义的描述的能力将相应降低,直至达到这样一个阈值,一旦超过它,精确性和有意义性将变成两个几乎互相排斥的特性。”这就是说,复杂程度越高,有意义的精确化能力便越低。复杂性意味着因素众多,时变性大,其中某些因素及其变化是人们难以精确掌握的,而且人们又常常不可能对全部因素和过程都进行精确的考察,而只能抓住其中主要部分,忽略掉所谓的次要部分。这样,在事实上就给对系统的描述带来了模糊性。“常规数学方法的应用对于本质上是模糊系统的分析来说是不协调的,它将引起理论和实际之间的很大差距。”因此,必须寻找到一套研究和处理模糊性的数学方法。这就是模糊数学产生的历史必然性。模糊数学用精确的数学语言去描述模糊性现象,“它代表了一种与基于概率论方法处理不确定性和不精确性的传统不同的思想,……,不同于传统的新的方法论”。它能够更好地反映客观存在的模糊性现象。因此,它给描述模糊系统提供了有力的工具。
L.A.扎德教授于1975年所发表的长篇连载论着《语言变量的概念及其在近似推理中的应用》(《The Concept of a Linguistic Variable &Its Application to Approximate Reasoning》),提出了语言变量的概念并探索了它的含义。模糊语言的概念是模糊集合理论中最重要的发展之一,语言变量的概念是模糊语言理论的重要方面。语言概率及其计算、模糊逻辑及近似推理则可以当作语言变量的应用来处理。人类语言表达主客观模糊性的能力特别引人注目,或许从研究模糊语言入手就能把握住主客观的模糊性、找出处理这些模糊性的方法。有人预言,这一理论和方法将对控制理论、人工智能等作出重要贡献。
模糊数学诞生至今仅有22年历史,然而它发展迅速、应用广泛。它涉及纯粹数学、应用数学、自然科学、人文科学和管理科学等方面。在图象识别、人工智能、自动控制、信息处理、经济学、心理学、社会学、生态学、语言学、管理科学、医疗诊断、哲学研究等领域中,都得到广泛应用。把模糊数学理论应用于决策研究,形成了模糊决策技术。只要经过仔细深入研究就会发现,在多数情况下,决策目标与约束条件均带有一定的模糊性,对复杂大系统的决策过程尤其是如此。在这种情况下,运用模糊决策技术,会显得更加自然,也将会获得更加良好的效果。
我国学者对模糊数学的研究始于70年代中期,然而发展甚速,已有了一支较强的研究队伍,成立了中国模糊集与系统学会,出版了《模糊数学》杂志。出版了许多颇有价值的论着,例如,汪培庄教授所着《模糊集与随机集落影》、《模糊集合论及其应用》,张文修教授编着的《模糊数学基础》等等。我国学者把模糊数学理论应用于气象预报,提高了预报质量,在1980年召开的国际气象学术讨论会上,我国所提交论文得到会议的好评。在中医医疗诊断方面,还制成了《关幼波教授治疗肝病计算机诊断程序》。实践表明,该计算机的医疗效果良好,为继承、发扬祖国医学作出了贡献。这一经验也被推广应用于治疗急腹症等方面。我国学者应用模糊数学理论,在地质探矿、生态环境、企业管理、生物学、心理学等领域,也都分别取得了较好的应用成果。
❺ 概率与模糊数学的区别
首先概率论的基础是康托集,你可以简单理解为集合中的元素只有{0,1}两种状态,他关注的是事件最终的结果,要么发生,要么不发生,而在事前做一个预计,这个叫做概率;而模糊理论的基础是模糊集,集合中的元素状态是0~1的实数,你可以理解为它度量的是事件发生的一个过程。
举个例子:比如一个班上总共有10个学生(其中有一个学生A),但是只有8个人去教室上课,恰好一位新老师第一天来上课(假设所有的学生她都不认识),当她在名册上看到了A的名字,那么她就可以判断A在教室的概率是0.8,而做这个判断是有前提:A只有两种状态,要么A在教室(1);要么A不在教室(0),这个前提就是康托集。于此同时,A赶来上课了,而当他刚把半个身子跨进教室门口,恰好某个同学给他拍了张照片。那么从这张照片上判断,A在这间教室的程度大约是0.5(隶属度), 这种情况下实际认为的是A在教室的状态不再是仅用0和1两个状态刻画,而是用0到1之间的连续实数刻画。 从这个两个理论上来说,俩种理论都是科学的。
但是目前的话,确实模糊数学的发展要远远滞后与统计,同时关注的学者有限,属于一个较冷门的学科。
❻ 简述模糊数学与明晰数学的区别
模糊数学又称Fuzzy 数学,是研究和处理模糊性现象的一种数学理论和方法。模糊性数学发展的主流是在它的应用方面。
由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。
(6)模糊数学什么意思扩展阅读
模糊数学为现代数学的基础,集合可以表现概念,把具有某种属性的东西的全体称为集合。现实生活中许多事物(或现象)的变化是过渡性的,没有明确的界限,如人长得高、矮、胖瘦等,都是模糊性的语言。
正思通感围像具有模物性的特征,为了提高分类精度,在通感图像识别中,引人模糊数学方法是很有前景的。应当指出,在目前的技术条件下,并算机自动识别方法还无法代特目视解译方法。模糊数学又称FUZZY 数学。“模糊”二字译自英文“FUZZY ”一词,该词除了有模糊意思外,还有“不分明”等含意。有人主张音义兼顾译之为“乏晰”等。但他们都没有“模糊”含意深刻。模糊数学是研究和处理模糊性现象的一种数学理论和方法。 1965 年美国控制论学者L.A.扎德发表论文《模糊集合》,标志着这门新学科的诞生。现代数学建立在集合论的基础上。一组对象确定一组属性,人们可以通过指明属性来说明概念,也可以通过指明对象来说明。符合概念的那些对象的全体叫做这个概念的外延,外延实际上就是集合。一切现实的理论系统都有可能纳入集合描述的数学框架。经典的集合论只把自己的表现力限制在那些有明确外延的概念
❼ 模糊数学在人工智能中的应用
模式识别是计算机应用的重要领域之一。人脑能在很低的准确性下有效地处理复杂问题。如计算机使用模糊数学,便能大大提高模式识别能力,可模拟人类神经系统的活动。
在工业控制领域中,应用模糊数学,可使空调器的温度控制更为合理,洗衣机可节电、节水、提高效率。在现代社会的大系统管理中,运用模糊数学的方法,有可能形成更加有效的决策。
(7)模糊数学什么意思扩展阅读:
一、相关应用
模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。
在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机智能,不少人认为它与新一代计算机的研制有密切的联系。
二、研究内容
第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。
乍得以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。
第二,研究模糊语言学和模糊逻辑。
人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。
第三,研究模糊数学的应用。
模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,乍得的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。
❽ 模糊数学与人们常说的数学有何差别谢谢
模糊数学又称FUZZY 数学。“模糊”二字译自英文“FUZZY ”一词,该词除了有模糊意思外,还有“不分明”等含意。有人主张音义兼顾译之为“乏晰”等。但他们都没有“模糊”含意深刻。模糊数学是研究和处理模糊性现象的一种数学理论和方法。 模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。模糊性数学最重要的应用领域应是计算机智能。它已经被用于专家系统和知识工程等方面,在各个领域中发挥看非常重要的作用,并已获得巨大的经济效益。 模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊 智能化 聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。 目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。 模糊数学还远没有成熟,对它也还存在着不同的意见和看法,有待实践去检验。
❾ 灰色系统理论和模糊数学有什么不同,应用的侧重点有什么不同
有人认为模糊数学是灰色理论预测的基础,个人觉得,它们直接确实有共同点,如优选方面,涉及到灰色理论的灰色统计和模糊数学的归属问题,这两者很相似。不过灰色理论主要重于不定性数据的预测,GM预测就是关于时间序列的预测模型,而模糊数学主要是判断隶属性问题。
❿ 关于遗传算法,模糊数学,神经网络三种数学的区别和联系
遗传算法是一种智能计算方法,针对不同的实际问题可以设计不同的计算程序。它主要有复制,交叉,变异三部分完成,是仿照生物进化过程来进行计算方法的设计。
模糊数学是研究现实生活中一类模糊现象的数学。简单地说就是像好与坏怎样精确的描述,将好精确化,用数字来表达。
神经网络是一种仿生计算方法,仿照生物体中信息的传递过程来进行数学计算。
这三种知识都是近40年兴起的新兴学科,主要应用在智能模糊控制上面。这三者可以结合起来应用。如用模糊数学些遗传算法的程序,优化神经网络,最后用神经网络控制飞行器或其他物体