㈠ 七年级上册数学第二张检测全部答案。
北师大版七年级上册第二章单元检测题及答案
1.下列说法正确的是( ).
A.数0是最小的整数 B.若│a│=│b│,则a=b
C.互为相反数的两数之和为零 D.两个有理数,大的离原点远
2.今年2月份某市一天的最高气温为11℃,最低气温为-6℃,那么这一天的最高气温比最低气温高( ).
A.-17℃ B.17℃ C.5℃ D.11℃
3.若│a│=3,│b│=2,ab,则a+b=( ).
A.-5 B.-1 C.-5或-1 D.±5或±1..
㈡ 初一上册数学期末试卷和答案
一、选择题(每小题1分,共10分)
1. 下列关于单项式 的说法正确的是( )
A. 系数是3,次数是2 B. 系数是 次数是2
C. 系数是 ,次数是3 D. 系数是- ,次数是3
2. 下列事件中,不确定事件的个数为 ( )
①若x是有理数,则
②丹丹每小时可以走20千米
③从一副扑克牌中任意抽取一张,这张扑克牌是大王。
④从装有9个红球和1个白球的口袋中任意摸出一个球,这个球是红球
A. 1个 B. 2个 C. 3个 D. 4个
3. 要把人类送上火星,还有许多航天技术问题需要解决,如:已知一个成年人平均每年呼吸氧气6.57× 升,而目前飞船飞往火星来回一趟需2年时间,如果飞船上有3名宇航员,那么来回一趟理论上需要氧气( )克,(氧气是1.43克/升,结果用科学记数法表示,保留三位有效数字)
A. B. C. D.
4. 钝角三角形的三条高所在直线的交点在( )
A. 三角形内 B. 三角形外 C. 三角形边上 D. 不能确定
5. 下列不能用平方差公式计算的是( )
A. B.
C. D.
6. 在西部山区有位希望中学的学生站在镜子面前,那么他的校徽在镜子里的成像是( )
7. 小马虎在下面的计算中,只做对了一道题,他做对的题目是( )
A. B.
C. D.
8. 在△ABC中,∠ABC与∠ACB的平分线交于点I,∠ABC+∠ACB=100°,则∠BIC的度数为( )
A. 80° B. 50° C. 100° D. 130°
9. 如下的四个图中,∠1与∠2是同位角的有( )
① ② ③ ④
A. ②③ B. ①②③ C. ①②④ D. ①
10. 一根蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(小时)的关系用图像表示为( )
二、填空题(每小题2分,共20分)
1. 多项式 有( )项,次数为( )次.
2. 下列数据是近似数的有( )。(填序号)
①小红班上有15个男生:
②珠穆朗玛峰高出海平面8844.43米。
③联合国2001年2月27日曾发表了一项人口报告,说今后5年内全球预计有1550万人死于艾滋病,现在看来不止这个数目。
④玲玲的身高为1.60米。
3. 观察下面的平面图形,其中是轴对称图形的是( )。(填序号)
4. 一个均匀小立方体的6个面上分别标有数字1,2,3,4,5,6,任意掷出这个小立方体,则掷出数字是3的倍数的概率是( )。
5. 如图,扇形OAB的半径为10,当扇形圆心角的度数变化时,扇形的面积也随之变化,在这个变化过程中,自变量是( ),因变量是( )。
6. 一个圆的半径为r,另一个圆的半径是这个圆的半径的5倍,这两个圆的周长之和是( )。
7. 有长度为2厘米,6厘米,8厘米,9厘米的四条线段,选择其中三条组成三角形,有( )种组成方法。
8. 如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD,如果∠EOF= ∠AOD,
则∠EOF=( )度。
9. 如图,△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=70°,∠C=40°,则
∠DAE=( )度,∠AEC=( )度.
10. 如图是小明用火柴搭的1条、2条、3条“金鱼” ,按此规律,则搭第n条“金鱼”时需要火柴( )根。(第一条鱼用了8根火柴)。
三、(每题7分,共14分)
1. 计算:
2. 先化简,在求值:
,其中
四、(第1题6分,第2题8分,共14分)
1. 如图,在由小正方形组成的L形图形中,请你用三种不同方法分别在下面图形中添画一个小正方形使它成为轴对称图形。
2. 如图,是经专家论证得出来的某市新开发的海港2007-2011年的港口吞吐量规划统计图。
(1)(4分)看图,简述该港五年规划的特征:(写出两点即可)
(2)(4分)海港开发将有力拉动该市的经济发展,如果每万吨吞吐量能给该市带来10万元的收入,按规划五年内海港共给该市财政增加多少亿元的收入?
五、(第1题7分,第2题8分,共15分)
1. 小东找来一张挂历画包数学课本。已知课本长a厘米,宽b厘米,厚c厘米,小东想在包课本的封面与封底时,书皮每一边都折进去m厘米,问小东应在挂历画上裁下一块多大面积的长方形?
2. 下图是某厂一年的收入变化图,根据图像回答,在这一年中:
①(4分)什么时候收入最高?什么时候收入最低?最高收入和最低收入各是多少?
②(1分)6月份的收入是多少?
③(1分)哪个月的收入为400万元?
④(1分)哪段时间收入不断增加?
⑤(1分)哪段时间收入不断减少?
六、(8分)如图,已知∠1+∠2=180°,∠A=∠C,试说明AF‖CE
七、(8分)甲、乙两人想利用转盘游戏来决定谁在今天值日。如图是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,若指针指向红色区域,则甲值日,否则,乙值日。此游戏对甲乙双方公平吗?为什么?
八、(11分)如图1,2,四边形ABCD是正方形(AD=AB,∠A=90°,∠ABC=∠CBM=90°)M是AB延长线上的一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F。
(1)(9分)当点E在AB边的中点位置如图1时,连接点E与AD边的中点N,试说明NE=BF;
(2)(2分)当点E在AB边的任意位置如图2时,N在线段AD的什么位置时,NE=BF?不必说明理由。
图1 图2
【试题答案】
一、选择题
1. D 2 . B 3. C 4. B 5. C 6. B 7. D 8. D 9. C 10. B
二、填空题
1. 4 4 2. ②③④ 3. ①②③
4. 5. 扇形圆心角的度数 扇形的面积
6. 7. 2 8. 30°
9. 15 105 10. 8+6(n-1)
三、
1. -1
2. 原式= ,当a=-1,b=-2时,原式= -16
四、
1.
2. (1)吞吐量逐年增加,起始三年增长速度慢,后两年增长速度较快,2011年吞吐量是2007年的3倍。
(2)16亿元。
五、
1.
2. (1)12月份最高,收入500万元,8月份收入最低,收入100万元。
(2)200万元
(3)1月份
(4)8月——12月
(5)1月——8月。
六、因为 ∠1+∠2=180°
所以DC‖AB
所以∠A=∠FDC
又因为∠A=∠C
所以∠FDC=∠C
所以AF‖CE
七、公平。 ,
八、(1)因为∠NDE+∠AED=90°, ∠BEF+∠AED=90°
所以∠NDE=∠BEF
因为BF平分∠CBM
所以∠EBF=90°+45°=135°,
因为AN=AE
所以∠ANE=∠AEN=45°
∠DNE=180°-∠ANE=135°
所以∠EBF=∠DNE
又DN=EB
所以△DNE≌△EBF
所以NE=BF
(2)当DN=EB时。
㈢ 名师测控数学七年级上册数学经典第二章达标测试题标准答案
科普知识
磁共振
磁共振指的是自旋磁共振(spin magnetic resonance)现象。其意义上较广,包含核磁共振(nuclear magnetic resonance, NMR)、电子顺磁共振(electron paramagnetic resonance, EPR)或称电子自旋共振(electron spin resonance, ESR)。
此外,人们日常生活中常说的磁共振,是指磁共振成像(Magnetic Resonance Imaging,MRI),其是利用核磁共振现象制成的一类用于医学检查的成像设备。
中文名:自旋磁共振现象
外文名:Spin Magnetic Resonance Phenomenon
所属领域:物理
发展简史
磁共振是在固体微观量子理论和无线电微波电子学技
点击查看图片
用核磁共振现象制成的MR成像设备
术发展的基础上被发现的。1945年首先在顺磁性Mn盐的水溶液中观测到顺磁共振,第二年,又分别用吸收和感应的方法发现了石蜡和水中质子的核磁共振;用波导谐振腔方法发现了Fe、Co和Ni薄片的铁磁共振。1950年在室温附近观测到固体Cr2O3的反铁磁共振。1953年在半导体硅和锗中观测到电子和空穴的回旋共振。1953年和1955年先后从理论上预言和实验上观测到亚铁磁共振。随后又发现了磁有序系统中高次模式的静磁型共振(1957)和自旋波共振(1958)。1956年开始研究两种磁共振耦合的磁双共振现象。这些磁共振被发现后,便在物理、化学、生物等基础学科和微波技术、量子电子学等新技术中得到了广泛的应用。例如顺磁固体量子放大器,各种铁氧体微波器件,核磁共振谱分析技术和核磁共振成像技术及利用磁共振方法对顺磁晶体的晶场和能级结构、半导体的能带结构和生物分子结构等的研究。原子核和基本粒子的自旋、磁矩参数的测定也是以各种磁共振原理为基础发展起来的。
磁共振成像技术由于其无辐射、分辨率高等优点被广泛的应用于临床医学与医学研究。一些先进的设备制造商与研究人员一起,不断优化磁共振扫描仪的性能、开发新的组件。例如:德国西门子公司的1.5T超导磁共振扫描仪具有神经成像组件、血管成像组件、心脏成像组件、体部成像组件、肿瘤程序组件、骨关节及儿童成像组件等。其具有高分辨率、磁场均匀、扫描速度快、噪声相对较小、多方位成像等优点。
基本原理
磁共振(回旋共振除外)其经典唯象描述是:原子、电子及核都具有角动量,其磁矩与相应的角动量之比称为磁旋比γ。磁矩M 在磁场B中受到转矩MBsinθ(θ为M与B间夹角)的作用。此转矩使磁矩绕磁场作进动运动,进动的角频率ω=γB,ωo称为拉莫尔频率。由于阻尼作用,这一进动运动会很快衰减掉,即M达到与B平行,进动就停止。但是,若在磁场B的垂直方向再加一高频磁场b(ω)(角频率为ω),则b(ω)作用产生的转矩使M离开B,与阻尼的作用相反。如果高频磁场的角频率与磁矩进动的拉莫尔(角)频率相等ω =ωo,则b(ω)的作用最强,磁矩M的进动角(M与B角的夹角)也最大。这一现象即为磁共振。
㈣ 人教版十套七年级上册数学期末试卷(带答案)
七年级数学科上册期末质量检查试卷 (时间:120分钟,满分120分) 题号一二三总分得分 一、相信你一定能选对!(每小题3分,共30分) 1.一个数的相反数是2,这个数是( ) A. B. C.2 D. 2 2.如果四个有理数的积是负数,那么其中负因数有( )个 A.3 B.1 C.0或2 D.1或3 3.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( ) A.0. 34×108 B.3. 4×106 C.34×106 D.3. 4×107 4.绝对值最小的有理数的倒数是( ) A.1 B. 1 C.0 D.不存在 5.关于x的方程3x + 2m + 1 = x 3m 2的解为x = 0,则m的值为( ) A. B. C. D. 6.某种商品每件的进价为190元,按标价的九折销售时,利润率为15. 2%。设这种商品的标价为每件 元,依题意列方程正确的是( ) A. B. C. D. 7.足球比赛计分规则是:胜一场得3分,平一场得1分,负一场得0分。今年武汉黄鹤楼队经过26轮激战,以42分获“中超”联赛第五名,其中负6场,那么胜场数为( ) A.9 B.10 C.11 D.12 8.下图是一个由6个相同的小立方体组成的几何体,从上面看得到的平面图形是( ) A. B. C. D. 9.下面等式成立的是( ) A.83. 5°= 83°50′ B.37°12′36″=37. 48° C.24°24′24″= 24. 44° D.41. 25°= 41°15′ 1110.式子—a+2a2中,最高次项的系数是A、0 B、2 C、—1 D、1 ( ) 二、你能填得又对又快吗?(每题3分,共30分) 11.若李白出生于公元701年用+701表示,则韩非子生于公年前206年表示为 . 12.数轴上点A表示的数是 4,点B表示的数是3,那么AB =__________. 13.近似数2. 13×103精确到_______位. 14.一个角的余角和补角之比为2︰5,则这个角等于________度. 15.已知方程x = 10 4x的解与方程8x + 5m = 11的解相同,那么m =________. 16 的绝对值是 ; 17.数轴上,点A、B分别表示有理数 、 ,原点O正好是AB的中点, 则代数式 的值等于___________. 18. 若单项式 与 是同类项,则m + n = ; 19.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角是______________. 20 。 、b、c、d为实数,规定运算 ,那么 时, x的值为 ; 三、认真解答,一定要细心哟!(本大题共60分) 21.(5分)计算: ÷ 22.(6分)解方程: 23.先化简,后计算:(6分) 2(a2b+ab2)- [2ab2 -(1-a2b)] -2,其中a=-2,b= 24.(5分)下表是某班5名同学某次数学测试成绩。根据信息完成下表,并回答问题。 姓名王芳刘兵张昕李聪江文成绩89 84 与全班平 均分之差1+20 2五人中分数最高的是谁?分数最低的是谁?谁的分数与全班平均分最接近? 25.(6分)如图,线段AC = 6 cm,线段BC = 15cm,点M是AC的中点,在CB上取一点N,使得CN︰NB = 1︰2。求MN的长。 26.(6分)如图,下图为不完整的正方体平面展开图,需要弥补一块,将其补充完整,请将所有的方法画出。 27.(6分)某文艺团体组织一场义演,售出成人票和学生票共1000张,筹得票款5950元。若成人票7元/张,学生票4元/张,求成人票和学生票各售出多少张? 28.(6分)已知∠AOB = 50°,∠AOC = 110°,分别作∠AOB和∠AOC的平分线OM、ON,求∠MON的大小。 29.(6分)(1)求上午10时30分,钟面上时针和分针的夹角; (2)在上午10时30分到11时30分之间, 时针和分针何时成直角? 30.(8分)已知线段AB = 6。 (1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和; (2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是线段AB的六等分点,这些点连同 (1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和。 2008—2009学年度上学期期末考试 七年级数学参考答案 一、选择题 1、D 2、D 3、D 4、D 5、A 6、C 7、C 8、D、 9、D 10、B. 二、填空题 11. -206 12.7. 13.十. 14.30. 15. 1. 16. 2 17.2005 18. 3.5 19. 40° 20. 3 三、解答题 21.解:原式=-9-(-8)×(-4)×(-4) 2分 =-9+128 4分 =119 5分 22.解:去分母得2(2x+1)+6=3(x+3) 4x+2+6=3x+9 2分 移项的 4x-3x=9-2-6 4分 合并得 x=1 6分 23. a2b-1 4分 ,原式=1 6分 24.完成表格得2分;分数最高的是刘兵,分数最低的是李聪,张昕的分数与全班平均分最接近。(每答对一问给1分,全答对给3分) 25.解:∵M是AC的中点 ∴MC=AM= AC= ×6=3(cm) 2分 ∵CN︰NB = 1︰2 ∴CN= BC= ×15=5(cm) 4分 ∴MN=MC+NC=3cm+5cm=8cm 6分 26.每画对一个图给1.5分 27.解:设成人票x张,则学生票(1000-x)张,根据题意得: 7x+4(1000-x)=5950 解之得x=650 4分 1000-x=350 5分 答:成人票售出650张,学生票售出350张。 6分 28.∠MON = 80°或30°. (得出一种答案给4分,得出另一种再给2分) 29.(1)135°… 1分 (2)设过x分钟,时针与分针的夹角为90°,列方程: … 3分 解得: … 4分 答:10点 或11点 分,时针与分针成直角… 5分(第一问1分,第二问5分) 30.(1)设M、N是线段AB的三等分点(图1分);共组成6条线段(写出来),这6条线段的长度和为20 --- 4分 (2)设P1、P2、P3是线段AB的四等分点,R1、R2、R3、R4、R5、R6是线段AB的六等分点(图略),易知R2与M重合,R3与P2重合,R4与N重合,故共可组成 条线段 … 8分
㈤ 去年初一上册数学期末试卷及答案
初一数学测试题 姓名: 一、单项选择 (每小题3分,共30分) 1、一个数的立方等于它本身,这个数是 ( ) A、0 B、1 C、-1,1 D、-1,1,0 2、下列各式中,不相等的是 ( ) A、(-3)2和-32 B、(-3)2和32 C、(-2)3和-23 D、|-2|3和|-23| 3、(-1)200+(-1)201=( ) A、0 B、1 C、2 D、-2 4、有一组数为:-1,1/2,-1/3,1/4,-1/5,1/6,…找规律得到第7个数是( ) A、-1/7 B、1/7 C、-7 D、7 5、下列说法正确的是( ) A、有理数的绝对值一定是正数 B、如果两个数的绝对值相等,那么这两个数相等 C、如果一个数是负数,那么这个数的绝对值是它的相反数 D、绝对值越大,这个数就越大 6、比较-1/5与-1/6的大小,结果为 ( ) A、> B、< C、= D、不确定 7、下列说法中错误的是( ) A、零除以任何数都是零。 B、-7/9的倒数的绝对值是9/7。 C、相反数等于它的本身的数是零和一切正数。 D、除以一个数,等于乘以它的倒数。 8、(-m)101>0,则一定有( ) A、m>0 B、m<0 C、m=0 D、以上都不对 9、一个正整数n与它的倒数1/n、相反数-n相比较,正确的是 ( ) A、-n≤n≤1/n B、-n<1/n<n C、1/n<n<-n D、-n<1/n≤n 二、填空题 每小题3分,共30分) 1、12的相反数与-7的绝对值的和是____________________。 2、一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是__________________。 3、在数轴上,-4与-6之间的距离是____________________。 4、若a=6,b=-2,c=-4,并且a-b+(-c)-(-d)=1,则d的值是__________。 5、若一个数的50%是-5.85,则这个数是_________________。 6、一个数的平方等于81,则这个数是____________________。 7、如果|a|=2.3,则a=__________________________。 8、计算-|-6/7|=___________________。 9、绝对值大于2而小于5的所有数是____________________。 10、有一列数,观察规律,并填写后面的数,-5,-2,1,4,_______,________,________。 三、计算题 (每小题5分,共20分) 1、-15+6÷(-3)×1/2 2、(1/4-1/2+1/6)×24 3、|-5/14|×(-3/7)2÷3/14 4、2/3+(-1/5)-1+1/3 四、解答题 (每小题10分,共20分) 1、某地探空气球地气象观测资料表明,高度每增加1千米、气温就大约降低6℃,若该地区地面温度为21℃,高空某处温度为-39℃,求此处的高度为多少千米? 2、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克) 2,3,-7.5,-3,5,-8,3.5,4.5,8,-1.5 这10名学生的总体重为多少?平均体重为多少? 七年级(上)数学期末测试题 班级 姓名 分数______ 一、耐心填一填(每小题3分,共30分) 1.(1)1.4的相反数是 ; (2) 的倒数是 ;(3)— = . 2.已知 ,则-nm= . 3.已知 为一元一次方程,则n= . 4.如图,它是一个正方体的展开图,若正方体的对面表示的数互为相反数,则a-(b-c)= . 5.延长线段AB到C,使BC= AB,反向延长AC到D使AD= AC,若AB=8cm,则CD= . 6.在线段AB上再添上 个点,能使线段AB上共有15条不同的线段. 7.质检员抽查一批零件的合格率。已知零件的规定尺寸为30±0.5cm。现抽查了10个零件,检查结果为:30.3,30.0,30.4,29.4,29.9,30.2,29.8,30.6,29.5,30.5(单位:cm),则这批零件的合格率为 . 8.某商场在“十.一”长假期间每天营业额是15万元,由此推算10月份的总营业额约为15×31=465(万元),你认为这样的推算是否合理?答: . 9.已知∠AOB=50°,∠BOC=30°则∠AOC= . 10.为了明春的教学,请你根据今秋教学中存在的问题,向数学老师提一点建议: 二、精心选一选,你一定慧眼识金(2分×8=16分) 11.-22与(-2)2 ( ) A.相等 B.互为相反数 C .互为倒数 D.它们的积为16 12.已知有理数a、b在数轴上的位置如图所示,则a、-a、b、-b之间的大小关系是( ) A.-a<-b<a<b B. a<-b<b<-a C.-b<a<-a<b D.a<b<-b<-a 13.小明想知道银河系里恒星大约有多少颗,他通过( )获取有关资料. A.问卷调查 B.实地考察 C.查阅文献资料 D.实验 14.用四舍五入把0.06097精确到千分位的近似值的有效数字是( ) A.0、6、0 B.0、6、1、0 C.6、0、9 D.6、1 15.下列展开图中是左图的展开图的是( ) A B C D 16.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是( ) A.两点之间线段最短;B.两点确定一条直线; C.线段可以大小比较;D.线段有两个端点 17.为了估计湖中有多少条鱼,从湖里捕捉50条鱼做记号,然后放回湖里,经过一段时 间,等带记号的鱼完全混于鱼群中,在捕捉第二次鱼200条,有10条做了记号,则估计湖里有鱼( ) A .400条 B .600条 C .800条 D .1000条 18.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x个零件,则所列方程为( ) A.13x=12(x+10)+60 B.12(x+10)=13x+60 C. D. 三、细心解一解,你一定是数学行家! 19.展示你的运算能力(4分×2=8分) (1) (2) ) 20.展示你解方程的能力(4分×2=8分) (1)3(20-y)=6y-4(y-11) (2) 21.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角。(6分) 22.相信你一定行!(8分) 已知a与b互为相反数,c、d互为倒数, ,y不能作除数, 求 的值. 23.如图,∠COD=116°,∠BOD=90°,OA平分∠BOC, 求∠AOD的度数.(6分) 四、用心想一想,成功一定属于你! 24.当一个明白的消费者.(8分) 仔细观察下图,认真阅读对话. 小朋友:阿姨,我买一盒饼干和一袋牛奶。(递上10元钱) 售货员:小朋友,本来你用10元钱买一盒饼干是有多的,但要买一袋牛奶就少1元钱啦!今天是儿童节,我给你买的饼干打八折,两样的东西请拿好,还找你8角钱。 根据对话内容,请求出饼干和牛奶的标价是多少元? 25.探索与发现(2分+2分+2分+4分=10分) 将连续的奇数1,3,5,7,9……,排成如图所示的数阵.(1)十字框中的五个数的和与中间数15有什么关系? (2)设中间数为a,用代数式表示十字框中五数之和. (3)将十字框中上下左右平移,可框住另外五个数,这五个数的和还有这种规律吗? (4)十字框中五个数之和能等于2005吗?若能,请写出这五个数;若不能,说明理由. 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 ……
㈥ 七年级上册数学期末试卷及答案免费
我有两条应用题,我在考试剩余的时间抄的
(1)以知5台A型机器的产品装满后8箱还剩4个,7台B型机器一天的产品装满11箱后还剩1个。每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品。
(2)大客车上原有乘客(4a-2b)人,中途下车一半人,又上车若干人。这时车上共有乘客(4a-3b)人。
(1)上车的乘客是多少人?
(2)若a是正数,上车的乘客比原来的乘客是多了还是少了?说明理由
(3)当a=15,b=10时上车乘客是多少人
㈦ 初一上学期第二单元数学试卷
[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)
5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y
有理数的加减混合运算
【【同步达纲练习】
1.选择题:
(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( )
A.-2-3-5-4+3 B.-2+3+5-4+3
C.-2-3+5-4+3 D.-2-3-5+4+3
(2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( )
A.-10 B.-9 C.8 D.-23
(3)-7,-12,+2的代数和比它们的绝对值的和小( )
A.-38 B.-4 C.4 D.38
(4)若 +(b+3)2=0,则b-a- 的值是( )
A.-4 B.-2 C.-1 D.1
(5)下列说法正确的是( )
A.两个负数相减,等于绝对值相减
B.两个负数的差一定大于零
C.正数减去负数,实际是两个正数的代数和
D.负数减去正数,等于负数加上正数的绝对值
(6)算式-3-5不能读作( )
A.-3与5的差 B.-3与-5的和
C.-3与-5的差 D.-3减去5
2.填空题:(4′×4=16′)
(1)-4+7-9=- - + ;
(2)6-11+4+2=- + - + ;
(3)(-5)+(+8)-(+2)-(-3)= + - + ;
(4)5-(-3 )-(+7)-2 =5+ - - + - .
3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′)
(1)(-21)+(+16)-(-13)-(+7)+(-6);
(2)-2 -(- )+(-0.5)+(+2)-(+ )-2.
4.计算题(6′×4=24′)
(1)-1+2-3+4-5+6-7;
(2)-50-28+(-24)-(-22);
(3)-19.8-(-20.3)-(+20.2)-10.8;
(4)0.25- +(-1 )-(+3 ).
5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′)
(1)x+y-z; (2)-x-y+z; (3)-x+y+z; (4)x-y-z.
【素质优化训练】
(1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9;
(2)-(+2 )-(-1 )-(+3 )+(- )
=( 2 )+( 1 )+( 3 )+( );
(3)-14 5 (-3)=-12;
(4)-12 (-7) (-5) (-6)=-16;
(5)b-a-(+c)+(-d)= a b c d;
2.当x= ,y=- ,z=- 时,分别求出下列代数式的值;
(1)x-(-y)+(-z); (2)x+(-y)-(+z);
(3)-(-x)-y+z; (4)-x-(-y)+z.
3.就下列给的三组数,验证等式:
a-(b-c+d)=a-b+c-d是否成立.
(1)a=-2,b=-1,c=3,d=5;
(2)a=23 ,b=-8,c=-1 ,d=1 .
4.计算题
(1)-1-23.33-(+76.76);
(2)1-2*2*2*2;
(3)(-6-24.3)-(-12+9.1)+(0-2.1);
(4)-1+8-7
【生活实际运用】
某水利勘察队,第一天向上游走5 千米,第二天又向上游走5 ,第三天向下游走4 千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米?
参考答案:
【同步达纲练习】
1.(1)C;(2)B;(3)D;(4)A;(5)C;(6)C 2.(1)4,(-7),(-9) (2)(-6),(-11),(-4),2; (3)-5,8,2,3; (4)3,7,2;
3.略4.(1)-4; (2)-80; (3)-30.5 (4)-5
5.(1)-4; (2)4; (3)0.4; (4)-0.4.
【素质优化训练】
1.(1)-,+,+; (2)-,+,-,-; (3)+,+; (4)-,+,+; (5)-,+,-,-.
2.(1) (2) (3) (4)-
3.(1) (2)都成立.
4.(1)-
(2)
(3)-29.5
(4)-1 第(4)题注意同号的数、互为相反数先分别结合。
【生活实际运用】
1.上游1 千米
祝你成才!!
㈧ 七年级数学上册第2章2.3~2.5水平测试 的答案
你把题目全打出来,我来回答~````
不过有那个时间,不如好好专心做作业
㈨ 七年级上册数学期末试卷,150分的,要答案
2010-2011学年度第一学期七年级期末数学试卷
(考试时间为100分钟,试卷满分为100分)
班级__________ 学号___________ 姓名___________ 分数____________
一、选择题(每题3分,共36分)
1.在下列各数:-(-2) ,-(-2^2) ,-2的绝对值的相反数 ,(-2)^2 , 中,负数的个数为( )
A.1个 B.2个 C.3个 D.4个
2.下列命题中,正确的是( )
①相反数等于本身的数只有0; ②倒数等于本身的数只有1;
③平方等于本身的数有±1和0; ④绝对值等于本身的数只有0和1;
A.只有③ B. ①和② C.只有① D. ③和④
3.2007年10月24日,搭截着我国首颗探月卫星“嫦娥一号”的“长征三号甲”运载火箭在西昌卫星发射中心三号塔架发射成功,技术人员对“嫦娥一号”进行了月球环境适应性设计,这是因为月球表面的昼夜温差可达310℃,白天阳光垂直照射的地方可达127℃,那么夜晚的温度降至( )
A.437℃ B.183℃ C.-437℃ D.-183℃
4.据测我国每天因土地沙漠化造成的经济损失约1.5亿元,用科学记数法表示我国一年(按365天计算)因土地沙漠化造成的总经济损失( )
A.5.475*10^11 B. 5.475*10^10
C. 0.547*10^11 D. 5.475*10^8
5.两数相加,其和小于其中一个加数而大于另一个加数,那么( )
A.这两个加数的符号都是正的 B.这两个加数的符号都是负的
C.这两个加数的符号不能相同 D.这两个加数的符号不能确定
7.代数式5abc , -7x^2+1,-2x/5 ,1/3 ,(2x-3)/5 中,单项式共有( )
A.1个 B.2个 C.3个 D.4个
8.小刚做了一道数学题:“已知两个多项式为 A,B ,求A+B 的值,”他误将“ A+B”看成了“ A-B”,结果求出的答案是x-y ,若已知 B=3x-2y,那么原来A+B的值应该是( )。
A.4x+3y B.2x-y C.-2x+y D.7x-5y
9.下列方程中,解是-1/2的是()
A.x-2=2-x B.2.5x=1.5-0.5x C.x/2-1/4=-5/4 D.x-1=3x
11.甲乙两要相距 m千米,原计划火车每小时行x 千米,若每小时行50千米,则火车从甲地到乙地所需时间比原来减少( )小时。
A. m/50 B. m/x C. m/x-m/50 D. m/50-m/x
12.我们平常的数都是十进制数,如2639=2*10^3+6*10^2+3*10+9 ,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制,只有两个数码0和1.如二进制数 101=1*2^+0*2^1+1=5,故二进制的101等于十进制的数5,那么二进制的110111等于十进制的数( )
A.55 B.56 C.57 D.58
二、填空题(每小题2分,共16分)
13.大于-2 而小于1的整数有________ 。
14.若一个数的平方是9,则这个数的立方是________。
15.计算:10+(-2)*(-5)^2=_________ 。
16.近似数2.47万是精确到了_________ 位,有________个效数字。
17.若代数式 2x-6与-0.5 互为倒数,则x=______ 。
18.若2*a^3n 与 -3*a^9之和仍为一个单项式,则a=_______ 。
四、列方程解应用题(共13分)
29.(本题4分)甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.
30.(本题4分)青藏铁路的通车是几代中国人的愿望.在这条铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是每小时100千米,在非冻土地段的行驶速度可以达到每小时120千米,在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段约多用O.77小时.如果通过非冻土地段需要 t小时,
(1)用含有 t的代数式表示非冻土地段比冻土地段长多少千米?
(2)若格尔木到拉萨路段的铁路全长是1118千米,求t (精确到O.O1)及冻土地段的长(精确到个位).
31.(本题5分)某年级利用暑假组织学生外出旅游,有10名家长代表随团出行,甲旅行社说:“如果10名家长代表都买全票,则其余学生可享受半价优惠”;乙旅行社说:“包括10名家长代表在内,全部按票价的6折(即按全标的60%收费)优惠”,若全票价为40元,
(1)如果学生人数为30人,旅行社收费多少元?如果学生人数为70人,旅行社收费多少元?
(2)当学生人数为多少时,两家旅行社的收费一样?
(3)选择哪个旅行社更省钱?
五、探究题(共3分)
32.设a,b,c为有理数,在有理数的乘法运算中,满足;
(1)交换律 a*b=b*a;(2)对加法的分配律(a+b)*c=a*c+b*c 。
现对a&b 这种运算作如下定义: a&b=a*b+a+b
试讨论:该运算是否满足(1)交换律?(2)对加法的分配律?通过计算说明。
六、附加题(共6分,记入总分,但总分不超过100分。)
33.(本题3分)证明:1/3<=1/(1*3)+1/(3*5)+------+1/[(2n-1)*(2n+1)] <1/2,(n 为正整数)。
34.(本题3分)
关于 x的方程 ||x-2|-1|=a有三个整数解,求 a的值。
说明:由于原卷中大部分数字和字母都使用了公式编辑器,所以无法显示,我对部分题目做了修改,有的题目实在不好打了,我就删掉了,还请见谅。