‘壹’ 如何培养做数学证明题的思路
数学证明题技巧如下:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去„„这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
(4)“读”——读题
如何读题?仁者见仁、智者见智,我们课题组结合我们的研究和本校学生的实际,将读题分为三步:第一步,粗读(类似语文阅读的浏览)。快速地将题目从头到尾浏览一遍,大致了解题目的意思和要求;第二步,细读。在大致了解题目的意思和要求的情况下,再认真地有针对性地读题,弄清题目的题设和结论,搞清已知是什么、需要证明的是什么?并尽可能地将已知条件在图形中用符号简明扼要地表示出来(如哪两个角相等,哪两条线段相等,垂直关系,等等),若题中给出的条件不明显的(即有隐含条件的),还要指导学生如何去挖掘它们、发现它们;第三步,记忆复述。在前面粗读和细读的基础上,先将已知条件和要证明的结论在心里默记一遍,再结合图形中自己所标的符号将原题的意思复述出来。到此读题这一环节,才算完成。
对于读题这一环节,我们之所以要求这么复杂,是因为在实际证题的过程中,学生找不到证明的思路或方法,很多时候就是由于漏掉了题中某些已知条件或将题中某些已知条件记错或想当然地添上一些已知条件,而将已知记在心里并能复述出来就可以很好地避免这些情况的发生。
(5)“析”——分析
用数学方法中的“分析法”,执果索因,一步一步探究证明的思路和方法。教师用启发性的语言或提问指导学生,学生在教师的指导下经过一系列的质疑、判断、比较、选择,以及相应的分析、综合、概括等认识活动,思考、探究,小组内讨论、交流、发现解决问题的思路和方法。
(6)“择”——选择最简易的方法
选择最简单的一种证题方法,这样做,不仅能进一步理清证明思路、记忆相关的几何定理、性质,而且还增加了学习的兴趣和好奇心,从而激发学习的积极性和主动性。
(7)“练”——变式练习
变式,既是一种重要的思想方法,又是一种行之有效的方法。通过变式训练,展现知识发生、发展、形成的完整认知过程。变式教学符合学生是认知规律,能有层次地推进,为学生提供一个求异、思变的空间,让学生把学到的概念、公式、定理、法则灵活应用道各种情景中去,培养学生灵活多变的思维品质,提高学生研究、探索问题的能力,提高数学素养,从而有效地提高数学教学效果。
‘贰’ 高中数学解题思路有哪些
2019学魁`榜邱崇数学解题技巧(含终极秒杀选填)(16.6G超清视频)
链接:
若资源有问题欢迎追问~
‘叁’ 如何教娃数学解题思路
很多人学数学的时候,面对一个问题,脑子里面似乎有点模糊的想法,但又说不清楚到底该怎么做。其实这很正常,面对一个问题,一般不可能脑子里面马上浮现出完整的解答过程,人脑是人脑,不是机械式的计算机,人脑总是要先从有个直观概念到慢慢形成完整的逻辑链条。但是你要学会把你脑子里面的粗糙想法说出来,写下来,学会把这些想法表述成1234的步骤——我想先干什么,再干什么;要证明原命题,或许我可以考虑先做如下问题(某个特例或者弱一点的问题);等等等等。
这么做的好处是什么呢?第一,你把你的想法系统化,有利于你发现困难的点在哪里:有些步骤你可能已经做出来了,那么你可以集中精力去做你做不出来的那些步骤,而不必重新“载入”整个原问题。第二,你可以把你的想法告诉别人,看看别人能不能补充什么想法——这就要求你的想法具有“可理解性”,别人如果听不懂你在说什么,就没法和你交流。第三,如果实在做不出来,那么对照答案以后,你可以想想你自己想的时候哪些地方没想到,哪些困难的地方你没有克服,而答案是怎么处理这些困难的地方的。当然也有可能是你自己原来就想偏了,答案和你的想法完全是不同的方向。不过一个问题也不是只有一个解答,哪怕你看到了一个答案,你也可以想想你原来的想法到底可不可行,说不定把答案中的某些部分“嫁接”到你原来的想法里面也能得到另一个答案
‘肆’ 什么是解题思路数学
解题思路的获得,一般要经历三个步骤:1.从理解题意中提取有用的信息,如数式特点,图形结构特征等;2.从记忆储存中提取相关的信息,如有关公式,定理,基本模式等;3.将上述两组信息进行有效重组,使之成为一个合乎逻辑的和谐结构。数学的表达,有3种方式:1.文字语言,即用汉字表达的内容;2.图形语言,如几何的图形,函数的图象;3.符号语言,即用数学符号表达的内容,比如AB∥CD。在初中学段中,不仅要学好数学知识,同时也要注意数学思想方法的学习,掌握好思想和方法,对数学的学习将会起到事半功倍的良好效果。其中整体与分类、类比与联想、转化与化归和数形结合等不仅仅是学好数学的重要思想,同时对您今后的生活也必将起重要的作用。先来看转化思想:我们知道任何事物都在不断的运动,也就是转化和变化。在生活中,为了解决一个具体问题,不论它有多复杂,我们都会把它简单化,熟悉化以后再去解决。体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。如方程的学习中,一元一次方程是学习方程的基础,那么在学习二元一次方程组时,可以通过加减消元和代入消元这样的手段把二元一次方程组转化为一元一次方程来解决,转化(加减和代入)是手段,消元是目的;在学习一元二次方程时,可以通过因式分解把一元二次方程转化为两个一元一次方程,在这里,转化(分解因式)是手段,降次是目的。把未知转化为已知,把复杂转化为简单。同样,三元一次方程组可以通过加减和代入转化为二元一次方程组,再转化为一元一次方程。在几何学习中,三角形是基础,可能通过连对角线等作辅助线的方法把多边形转化为多个三角形进行问题的解决。所以,在数学学习和生活中都要注意转化思想的运用,解决问题,转化是关键。二、初中数学学生必备的解题理念1.如果把解题比做打仗,那么解题者的兵器就是数学基础知识,兵力就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是兵法。2.数学家存在的主要理由就是解决问题。因此,数学的真正的组成部分是问题和解答。问题是数学的心脏。3.问题反映了现有水平与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。问题就是矛盾。对于学生而言,问题有三个特征:(1)接受性:学生愿意解决并且具有解决它的知识基础和能力基础。
微信在线答题系统-培训机构专属网校课堂直播系统
广告 微信在线答题系统云朵课堂一站解决,提供直播录播+互动答疑+教学管理+考试题库等 查看详情 >
(2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。 (3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。 4.练习型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。 5.问题解决有不同的解释,比较典型的观点可归纳为4种: (1)问题解决是心理活动。面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。 (2)问题解决是一个探究过程。把问题解决定义为将先前已获得的知识用于新的、不熟悉的情境的过程。这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。 (3)问题解决是一个学习目的。学习数学的主要目的在于问题解决。因而,学习怎样解决问题就成为学习数学的根本原因。此时,问题解决就独立于特殊的问题,独立于一般过程或方法,也独立于数学的具体内容。 (4)问题解决是一种生存能力。重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学习生存的本领。 6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。其次一个表现是,长期徘徊在一招一式的归类上,缺少观点上的提高或实质性的突破。第三个表现是,多研究怎样解,较少问为什么这样解。在这些误区里,解题而不立法、作答而不立论。 7.人的思维依赖于必要的知识和经验,数学知识正是数学解题思维活动的出发点与凭借。丰富的知识并加以优化的结构能为题意的本质理解与思路的迅速寻找创造成功
‘伍’ 离散数学命题公式化简的思路
命题公式/命题形式/合式公式/公式:
1、可满足式:非重言的可满足式
重言式/永真式
2、矛盾式/永假式(不存在成真指派)
命题公式不是命题,只有当公式中的每一个命题变项都被赋以确定的真值时,公式的真值才被确定,从而成为一个命题。
命题逻辑的等值演算:
A⟺B:A和B有等值关系。对任意真值指派,A与B取值相同。A⟷B为永真式。
等值关系一般通过真值表法或者等值算法得到。
而不等值,只能通过真值表法,找到某个真值指派使得一个为真一个为假
德摩根律:┐(A∨B)⟺┐A∧┐B、┐(A∧B)⟺┐A∨┐B
蕴含等值式:A→B⟺┐A∨B
吸收律:A∨(A∧B)⟺A、A∧(A∨B)⟺A
归谬式:(A→B)∧(A→┐B)⟺┐A
‘陆’ 初中数学命题的写法和技巧
众所周知,命题是一个教师的教学基本功,熟练掌握数学单元试卷命题的方法和技巧,是充分发挥考试功能、成功教学不可缺少的环节.命题是影响学生测验成败的关键,直接影响教...
‘柒’ 初中数学解题的几种思路
随着对数学对象的研究的深入发展,数学的解题方法需要不断丰富和完善。数学教师钻研习题、精通解题方法,能够进一步促进教师熟练地掌握中学数学教材,夯实解题的基本功,掌握解题技巧,积累丰富教学经验,提高业务水平和教学能力。本文介绍的几种解题方法,均是初中数学中最常用的,有些方法甚至是教学大纲明确要求掌握的。
随着社会科技的高速进步,数学学科的不断发展,以及对数学对象的深入研究,初中数学的难度越来越大,给学生们带来无形的学习压力。数学题目由于难度不断增加,仅仅靠用传统的题海战术来提高解题能力的做法难以收到良好的效果。所以,在数学教学中加深对解题方法的探讨,使教师和学生们共同掌握规律性的方法,得到多数人的认可,这也是未来数学教学改革的方向之一。因此,本文通过列举几种常见的初中数学解题方法,给予同学们解题思路的指引,以达到掌握解题规律,缓解学习压力以及提高学习效率的目的。
1 配方解题法
将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。通常用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化筒根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2 换元解题法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、 变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。换元的方法有:局部换元、三角换元、均值换元等。换元的种类有:等参量换元、非等量换元。
3 待定系数解题法
它是中学数学中的一种比较常用的方法。有些时候通过题干就能确定出结果含有某种待定的系数,那么可以通过题目的条件来列出关于待定系数的等式,找出其中的某种关系,从而来解决看似比较困哪的题目。
4 判别式法解题法
可以利用方程式ax2+bx+c=0中△=b2―4ac的定理,它的用处不仅可以用来断定根的性质,而且对于代数式变形、求解方程组、不等式求解、几何图形分析更是一种解题方法。韦达定理最基本的用途在于根据一根求解另一个根或者根据两个数的和与积,分别求出这两个数。另外,利用判别式求出方程根的对称函数以及判断根的符号,甚者解答二次函数等复杂问题。判别式法应用面广泛,运用灵活多变,是必须掌握的有效方法之一。
5 面积解题法
在平面几何版块中,根据几何固定的面积公式推导与面积计算相关的性质,利用这种性质和关系证明或者计算面积的方法称为面积法,利用面积法往往能收到事半功倍的效果。几何题目中已知量和未知量都可以通过面积公式充分联系起来,并计算出所需要求证的结果。面积解题法的便捷之处在于善于利用面积法来分析几何元素间的联系,适当的时候只要稍添置辅助线就能分析之间的数量关系。
6 反证解题法
反证解题法与正面解题的思路不同之处在于方法预先提出与命题结果截然相反的假设。下一步根据这个假设为起点,按照逻辑层层推理,最后推导出矛盾,以此断定该假设为假命题,从反面肯定原命题为真命题。反证解题法有两种,一类为归谬反证法,另外一类为穷举反证法。反证法命题证明一般过程为:提出假设;进行归谬;求出结论。
提出反面假设是该方法的第一步,在做出假设之前,需要熟悉一些反设术语具体像:是与不是,存在或者不存在,是否平行,垂直与否,等于或是不等于,小于还是大于,至少有n个与至多有(n―1)个等等。其中反证解题法的关键是归谬,虽然推出矛盾的过程是灵活多变的,但以反面假设为依据是基础,否则推导过程将无法进行。通常导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾、与反设矛盾、自相矛盾。
7 其他解题法
①直接推演法:根据题目给定的条件为出发点,把所学的概念、公式、定理带入题目之中进行推理或运算,最后推导结论,这是解题过程中的传统方法,我们把这种解法叫做直接推演法。
②答案验算法:利用题目寻找合适的验证条件,再根据下一步的验证,试图求出正确答案,同时也可以将提供的参考答案代入题目中进行验证验算,确定哪一个答案是正确的,这种方法叫做验证法(也称代人法)。这种方法常常运用于定量命题题目之中。
③数字图形元素法:元素法通常把数字又或者图形是代入题设条件或结论中去,从而获得解答。这是特殊元素法的典型特点。
④排除法:由于选择题的正确答案通常都是唯一的,教师引导学生根据数学知识或推理、演算,排除错误的选项,再把其余的答案进行二次筛选,最终选出正确结论,这种方法的叫排除、筛选法。
⑤作图法:依据已知的条件,画出图形,借助图形形象具体的特点把抽象的命题简单化,以图象的性质、特点来判断,做出正确的选择。这称为图解法。图解法通常应用于选择题或者是应用题。
⑥分析法:直接按照题目给予的条件和结论,按照逻辑顺序一步一步作详尽的分析、归纳和判断,继而不断计算和推导正确答案,这一类方法称为分析法。
8 结语
数学学科是学习其他理工科课程的前提和基础,对学生们以后的工作和生活产生深远影响。灵活有效的数学解题方法,往往能够起到事半功倍的作用。教师在数学教学过程中,要善于剖析课程内容的重点和难点,探索不同种途径构建适合学生的解题方法,从而不断培养学生的数学思维以及解题能力。
‘捌’ 数学命题的结论怎么写
1.条件:如果点在角平分线上
结论:则点到角两边的距离相等
逆命题:到角的两边距离相等的点在角平分线上。
2.条件:如果点在线段的垂直平分线上
结论:则点到这条线段两个端点的距离相等
逆命题:到一条线段两个端点距离相等的点在线段的垂直平分线上。