导航:首页 > 数字科学 > 如何化解数学三大危机

如何化解数学三大危机

发布时间:2022-05-21 12:50:16

⑴ 数学史上的三次危机是什么

数学三大危机,涉及无理数、微积分和集合等数学概念。

1、危机一,希巴斯(Hippasus,米太旁登地方人,公元前470年左右)发现了一个腰为1的等腰直角三角形的斜边(即2的2次方根)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的着名理论。

2、危机二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻。

3、危机三,罗素悖论:S由一切不是自身元素的集合所组成,那S属于S吗?用通俗一点的话来说,小明有一天说:“我正在撒谎!”问小明到底撒谎还是说实话。罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论。

(1)如何化解数学三大危机扩展阅读:

排除悖论

危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。

公理化集合系统

成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。


参考资料网络-数学三大危机

⑵ 简答历史上的三次数学危机产生的根源与解决

论数学史上的三次数学危机 学号:100521026 姓名:付东群 摘要:数学发展从来不是完全直线,而是常常出现悖论。历史上一连串的数学 悖论动摇了人们对数学的可靠性的信仰,数学史上曾经发生了三次数学危机。数 学悖论的产生和危机的出现, 不单给数学带来麻烦和失望,更重要的是给数学的 发展带来新的生机和希望,促进了数学的繁荣。危机的产生、解决,又产生的无 穷反复过程, 不断推动着数学的发展,这个过程也是数学思想获得重要发展的过 程。 关键词:数学危机;无理数;微积分;集合论;悖论; 引言:数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一 帆风顺,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至面临危机。 数学史也是数学家们克服困难和战胜的斗争记录。无理数的发现,微积分和非欧 集合的创立, 乃至费马定理的证明......这样的例子在数学史上不胜枚举,他们 可以帮助人们了解数学创造的完美过程。 对这种创造的过程的了解则可以使我们 从前人的探索与奋斗中西区教益,获得鼓舞和增强信心。 第一次数学危机(无理数的产生) 第一次危机发生在公元前 580~568 年之间的古希腊,数学家毕达哥拉斯建立 了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知 识保密,所有发明创造都归于学派领袖。 (一)、危机的起源 毕达哥拉斯学派认为“万物皆数” ,这个数就是整数,他们确定数学的目的是 企图通过数的奥秘来探索宇宙的永恒真理, 并且认为宇宙间的一切现象都能归结 为整数或整数之比。后来这个学派发现了毕达哥拉斯学定理(勾股定理) ,他们 认为这是一件很了不起的事, 然而了不起的事后面还有更了不起的事。毕达哥拉 斯学派的希帕索斯从毕达哥拉斯定理出发, 发现边长为 1 的正方形对角线不能用 整数来表示, 这就产生了这个无理数。 这无疑对 “万物皆数” 产生了巨大的冲击, 由此引发了第一次数学危机【1】 。 (二) 、危机的解决 由无理数引发的第一次数学危机对古希腊的数学观点产生了极大的冲击。 动摇 数学基础的第一次危机并没有很轻易地被解决。大约到了公元前 370 年,这个矛 盾终于被毕达哥拉斯学派的欧多克斯通过给比例下新定义的方法巧妙的处理了。 但这个问题直到 19 世纪的戴德金和康托尔等人建立了现代实数理论才算彻底解 决了。 (三) 、对数学发展的意义 第一次危机的产生最大的意义是导致了无理数地产生, 打破了长时间的禁锢数学 发展的枷锁。 这次数学危机也使整数的权威地位开始动摇,而几何学的身份升高 了,在以后的一两千年中,几何支撑了数学的发展。同时危机也表明,直觉和经 验不一定靠得住,推理证明才是最可靠的,从此希腊人开始重视演译推理,并由 此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命 第二次数学危机(微积分工具) 18 世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分 数学家对这一理论的可靠性是毫不怀疑的。但是不管是牛顿,还是莱布尼茨所创 立的微积分理论都是不严格的。 (一) 、危机的起源 因为牛顿和莱布尼茨的微积分理论是建立在无穷小分析之上的, 但他们对作为 基本概念的无穷小量的理解与应用是混乱的。1734 年,英国哲学家、大主教贝 克莱发表《分析学家或者向一个不信正教数学家的进言》 ,矛头指向微积分的基 础——无穷小的问题,提出了所谓贝克莱悖论。笼统的说,贝克莱悖论可以表述 为“无穷小量究竟是否为 0”的问题。这一问题的提出在当时的数学界引起了一 定的混乱,由此导致了第二次数学危机的产生【2】 。 (二) 、危机的解决 为了解决第二次数学危机, 数学家们开始在严格化基础上重建微积分,其中贡 献最大的是法国数学家柯西,他在《分析教程》和《无穷小计算讲义》中给出了 数学分析一系列基本概念的精确定义。例如:他给出了精确的极限定义,然后用 极限定义连续性、导数、微分,定积分和无穷级数的收敛性。后来,魏尔斯特拉 斯及其追随者们实现了分析的算术化。至此,数学史上的第二次危机已经克服, 数学的整个结构已被恢复【3】 。 (三) 、对数学发展的意义 牛顿和莱布尼茨创立的微积分理论虽然存在一定的缺陷, 但微积分仍然很受重 视,被广泛地应用于物理学、力学、天文学中。危机爆发后,经过柯西等人的不 懈努力,严格的极限理论建立起来了,为微积分奠定了理论基础。微积分理论的 建立在数学史上有深远的意义。 一方面它消除了微积分长期以来的神秘性,使数 学以及其他科学冲破了宗教的束缚,为以后的独立发展创造了条件;另一方面, 微积分理论基础的建立加速了微积分的发展,产生了复变函数、实变函数、微分 方程、变分学、积分方程、泛函分析等学科,形成了庞大的分析体系,成为数学 的重要分支【4】 。 第三次数学危机(罗素悖论) 到 19 世纪末,康托尔的集合论已经得到数学家的承认,集合论也成功地应用 到其他的数学分支。集合论是数学的基础,由于集合论的使用,数学似乎已经达 到了无懈可击的地步。但是,正当数学家们熟练地应用集合论时,数学帝国又爆 发了一次危机。 (一) 、危机的起源 康托尔集合论的创造性成果为数学提供了广泛的理论基础,所以在 1900 年巴 黎国际数学会议上,法国大数学家庞加莱宣称: “数学的严格性,看来直到今天 才可以说实现了。 ”但事隔两年后,却传出一个惊人的消息:集合论的概念本身 出现了矛盾。 这就是英国数学家罗素提出的着名的悖论,罗素悖论的内容用一句 话表述就是:所有不以自己为元素的集合组成一个集合,记为 A;则有集合 A 包 含 A 等价于集何 A 不包含 A 这样的悖理【5】 罗素悖论一提出就在当时的数学界和 。 逻辑学界引起了极大的震动。 这一悖论引起的巨大反响则导致了数学史上的第三 次危机。 (二) 、危机的解决 危机产生后,数学家纷纷提出自己的解决方案。其中以罗素为主要代表的逻 辑主义学派,提出了类型论以及后来的曲折理论、限制大小理论、非类理论和分 支理论, 这些理论都对消除悖论起到了一定的作用;而最重要的是德国数学家策 梅罗提出的集合论的公理化, 策梅罗认为, 适当的公理体系可以限制集合的概念, 从逻辑上保证集合的纯粹性,他首次提出了集合论公理系统,后经费兰克尔、 冯·诺伊曼等人的补充形成了一个完整的集合论公理体系(ZFC 系统)【6】,ZFC 系统的建立, 使各种矛盾得到回避,从而消除了罗素悖论为代表的一系列集合悖 论,第三次数学危机表面上解决了。 (三)、对数学发展的意义 集合论公理系统的建立, 成功排除了集合论中出现的悖论,从而比较圆满地解 决了第三次数学危机。 但在另一方面, 罗素悖论对数学而言有着更为深刻的影响, 它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前, 导致了数学 家对数学基础的研究。为了消除第三次数学危机,数理逻辑也取得了很大发展, 证明论、 模型论和递归论相继诞生, 出现了数学基础理论、 类型论和多值逻辑等。 可以说第三次数学危机大大促进了数学基础研究及数理逻辑的现代性, 而且也直 接造成了数学哲学研究的“黄金时代”。 四、悖论与数学发展 历史上的三次数学危机,给数学界带来了极大的麻烦,危机的产生使数学家 认识到了现有理论的缺陷, 科学中悖论的产生常常预示着人类的认识将进入一个 新阶段,所以悖论是科学发展的产物,又是科学发展动力之一。希帕索斯悖论、 贝克莱悖论以及罗素悖论分别引发了数学发展史上的三次危机。然而,这三次危 机又不同程度的促进了数学的发展。第一次数学危机使人们发现无理数,建立了 完整的实数理论, 欧氏几何也应运而生并建立了几何公理体系;第二次数学危机 促成了分析基础理论的完善与集合论的创立; 第三次数学危机促成了数理逻辑的 发展与一批现代数学的产生,使集合论成为一个完整的集合论公理体系。 总结:数学史上的三次危机,虽给数学的发展带来了空前的困难,但是给数学 以极大的推动。 这三次危机的解决都丰富了数学理论, 推动了数学的严密化发展。 经历了历史上三次数学危机的数学界,是否从此就与数学危机“绝缘”呢?不! 因为人类的认识在各个历史阶段中的局限性和相对性, 在人类的认识的各个历史 阶段所形成的各个理论系统中, 本来就具有悖论产生的可能性,但在人类认识世 界的深化过程中同样具有排除悖论的可能性,数学大厦的基础任然存在着裂缝, 并不如想象中的那样完美与和谐。因此,我们要正确的看待数学史所产生的危机 和他对数学等学科发展所起的巨大作用。 参考文献: 【1】王保红.数学三次危机的认识论意义[J].山西教育学院学报,2001,第 4 期:106-107. 【2】董海瑞.漫谈数学史上的三次危机[J].太原大学教育学院学报,2007 年 6 月,83(25). 【3】陈云波.数学发展史上的三次危机[J].教学与管理,2004. 【5】王桂芹.数学在克服危机中前进[J].天中学刊,2000,15(5) :65-67. 【4】赵院娥.乔淑莉.悖论及其对数学发展的影响[J]。延安大学学报 2004,2(1) :21-25 【6】聂铭.三次数学危机的产生与解决[J].六盘水师专学报,2011,13(4).

⑶ 第三次数学危机是怎么化解的你觉得第四次在哪里

数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
1897年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最着名的是罗素于1919年给出的,它涉及到某村理发师的困境。理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。
罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。于是终结了近12年的刻苦钻研。
承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。
我觉得第四次可能是在中国,因为在曾经就有一位中国的数学爱好者李明波就宣称发现过第四次数学危机但是却被人认为是哗众取宠。

⑷ 数学三大危机是什么。

第一,希伯斯(Hippasu,米太旁登地方人,公元前5世纪)发现了一个腰为1的等腰直角三角形的斜边(即根号2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的着名理论。相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希伯斯抛入大海。

第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻。

第三,罗素悖论:S由一切不是自身元素的集合所组成,那S包含S吗?用通俗一点的话来说,小明有一天说:“我正在撒谎!”问小明到底撒谎还是说实话。罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!

(4)如何化解数学三大危机扩展阅读:

第二次危机解决:

经过柯西(微积分收官人)用极限的方法定义了无穷小量,微积分理论得以发展和完善,从而使数学大厦变得更加辉煌美丽!

第三次危机解决:

排除悖论:

危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。

“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”

1908年,策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。

公理化集合系统:

成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。

它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上着名的三大数学流派,而各派的工作又都促进了数学的大发展等等。

⑸ 简述三次数学危机的内容及解决情况.

第一次数学危机
从某种意义上来讲,现代意义下的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。这个学派兴旺的时期为公元前500年左右,它是一个唯心主义流派。他们重视自然及社会中不变因素的研究,把几何、算术、天文学、音乐称为“四艺”,在其中追求宇宙的和谐及规律性。他们认为“万物皆数”,认为数学的知识是可靠的、准确的,而且可以应用于现实的世界。数学的知识是由于纯粹的思维而获得,并不需要观察、直觉及日常经验。

毕达哥拉斯的数是指整数,他们在数学上的一项重大发现是证明了勾股定理。他们知道满足直角三角形三边长的一般公式,但由此也发现了一些直角三角形的三边比不能用整数来表达,也就是勾长或股长与弦长是不可通约的。这样一来,就否定了毕达哥拉斯学派的信条:宇宙间的一切现象都能归结为整数或整数之比。
不可通约性的发现引起第一次数学危机。有人说,这种性质是希帕索斯约在公元前400年发现的,为此,他的同伴把他抛进大海。不过更有可能是毕达哥拉斯已经知道这种事实,而希帕索斯因泄密而被处死。不管怎样,这个发现对古希腊的数学观点有极大的冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之数却可以由几何量表示出来。整数的尊崇地位受到挑战,于是几何学开始在希腊数学中占有特殊地位。

同时这也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始由“自明的”公理出发,经过演绎推理,并由此建立几何学体系,这不能不说是数学思想上一次巨大革命,这也是第一次数学危机的自然产物。
回顾以前的各种数学,无非都是“算”,也就是提供算法。即使在古希腊,数学也是从实际出发,应用到实际问题中去的。比如泰勒斯预测日食,利用影子距离计算金字塔高度,测量船只离岸距离等等,都是属于计算技术范围的。至于埃及、巴比伦、中国、印度等国的数学,并没有经历过这样的危机和革命,所以也就一直停留在“算学”阶段。而希腊数学则走向了完全不同的道路,形成了欧几里得《几何原本》的公理体系与亚里士多德的逻辑体系。
第二次数学危机
早在古代,人们就对长度、面积、体积的度量问题感兴趣。古希腊的欧多克斯引入量的观念来考虑连续变动的东西,并完全依据几何来严格处理连续量。这造成数与量的长期脱离。古希腊的数学中除了整数之外,并没有无理数的概念,连有理数的运算也没有,可是却有量的比例。他们对于连续与离散的关系很有兴趣,尤其是芝诺提出的四个着名的悖论:
第一个悖论是说运动不存在,理由是运动物体到达目的地之前必须到达半路,而到达半路之前又必须到达半路的半路……如此下去,它必须通过无限多个点,这在有限长时间之内是无法办到的。
第二个悖论是跑得很快的阿希里赶不上在他前面的乌龟。因为乌龟在他前面时,他必须首先到达乌龟的起点,然后用第一个悖论的逻辑,乌龟者在他的前面。这两个悖论是反对空间、时间无限可分的观点的。
而第三、第四悖论是反对空间、时间由不可分的间隔组成。第三个悖论是说“飞矢不动”,因为在某一时问间隔,飞矢总是在某个空间间隔中确定的位置上,因而是静止的。第四个悖论是游行队伍悖论,内容大体相似。这说明希腊人已经看到无穷小与“很小很小”的矛盾。当然他们无法解决这些矛盾。
希腊人虽然没有明确的极限概念,但他们在处理面积体积的问题时,却有严格的逼近步骤,这就是所谓“穷竭法”。它依靠间接的证明方法,证明了许多重要而难证的定理。
到了十六、十七世纪,除了求曲线长度和曲线所包围的面积等类问题外,还产生了许多新问题,如求速度、求切线,以及求极大、极小值等问题。经过许多人多年的努力,终于在十七世纪晚期,形成了无穷小演算——微积分这门学科,这也就是数学分析的开端。
牛顿和莱布尼兹被公认为微积分的奠基者。他们的功绩主要在于:1,把各种问题的解法统一成一种方法,微分法和积分法;2,有明确的计算微分法的步骤;3.微分法和积分法互为逆运算。

由于运算的完整性和应用范围的广泛性,使微积分成为解决问题的重要工具。同时关于微积分基础的问题也越来越严重。以求速度为例,瞬时速度是Δs/Δt当Δt趋向于零时的值。Δt是零、是很小的量,还是什么东西,这个无穷小量究竟是不是零。这引起了极大的争论,从而引发了第二次数学危机。
十八世纪的数学家成功地用微积分解决了许多实际问题,因此有些人就对这些基础问题的讨论不感兴趣。如达朗贝尔就说,现在是“把房子盖得更高些,而不是把基础打得更加牢固”。更有许多人认为所谓的严密化就是烦琐。
但也因此,微积分的基础问题一直受到一些人的批判和攻击,其中最有名的是贝克莱主教在1734年的攻击。
十八世纪的数学思想的确是不严密的、直观的、强调形式的计算,而不管基础的可靠与否,其中特别是:没有清楚的无穷小概念,因此导数、微分、积分等概念不清楚;对无穷大的概念也不清楚;发散级数求和的任意性;符号使用的不严格性;不考虑连续性就进行微分,不考虑导数及积分的存在性以及可否展成幂级数等等。
一直到十九世纪二十年代,一些数学家才开始比较关注于微积分的严格基础。它们从波尔查诺、阿贝尔、柯西、狄里克莱等人的工作开始,最终由威尔斯特拉斯、戴德金和康托尔彻底完成,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。
波尔查诺不承认无穷小数和无穷大数的存在,而且给出了连续性的正确定义。柯西在1821年的《代数分析教程》中从定义变量开始,认识到函数不一定要有解析表达式。他抓住了极限的概念,指出无穷小量和无穷大量都不是固定的量而是变量,并定义了导数和积分;阿贝尔指出要严格限制滥用级数展开及求和;狄里克莱给出了函数的现代定义。
在这些数学工作的基础上,维尔斯特拉斯消除了其中不确切的地方,给出现在通用的ε - δ的极限、连续定义,并把导数、积分等概念都严格地建立在极限的基础上,从而克服了危机和矛盾。

十九世纪七十年代初,威尔斯特拉斯、戴德金、康托尔等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析终于建立在实数理论的严格基础之上了。

同时,威尔斯特拉斯给出一个处处不可微的连续函数的例子。这个发现以及后来许多病态函数的例子,充分说明了直观及几何的思考不可靠,而必须诉诸严格的概念及推理。由此,第二次数学危机使数学更深入地探讨数学分析的基础——实数论的问题。这不仅导致集合论的诞生,并且由此把数学分析的无矛盾性问题归结为实数论的无矛盾性问题,而这正是二十世纪数学基础中的首要问题。
1-6悖论的产生——第三次数学危机

数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。


1897年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最着名的是罗素于1919年给出的,它涉及到某村理发师的困境。理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:"理发师是否自己给自己刮脸?"如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。

罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:"一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地"。于是终结了近12年的刻苦钻研。

承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。

⑹ 数学史上发生过三次危机,这三次危机是怎么回事

在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。

第一次数学危机

第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。

罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。”那么请问理发师自己的脸该由谁来刮?

罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。

虽然三次数学危机都已经得到了解决,但是对数学史的影响是非常深刻的,数学家试图建立严格的数学系统,但是无论多么小心,都会存在缺陷,包括后来发现的哥德尔不完备性定理。

⑺ 数学三大危机的第三次数学危机的解决

成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上着名的三大数学流派,而各派的工作又都促进了数学的大发展等等。

⑻ 简述三次数学危机的内容及解决情况

第一次数学危机是无理数的诞生,发现根号2不能写成两个整数相除,最终无理数被纳入了实数范围
第二次数学危机源于微积分工具的使用,由于定义不严格,无穷小量这些概念引起争论,最终建立了实数理论,极限理论,使得数学分析有了严格基础
第三次数学危机关于集合论,即着名的罗素悖论,集合的定义收到了攻击。最终通过不同的公理化系统解决,使数理逻辑等学科得到发展
希望对你有帮助!

⑼ 数学的三大危机

无理数的发现──第一次数学危机

大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为“四艺”,在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的“危机”,从而产生了第一次数学危机。

到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。

第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!

无穷小是零吗?──第二次数学危机

18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。

1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:“牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。”他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,“dx为逝去量的灵魂”。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。

18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。

直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。

悖论的产生---第三次数学危机

数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。

1897年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902 年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最着名的是罗素于1919年给出的,它涉及到某村理发师的困境。理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:“理发师是否自己给自己刮脸?”如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。

罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地”。于是终结了近12年的刻苦钻研。

承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。

⑽ 数学史上的第三次危机是如何化解的有可能出现第四次吗如果有,可能在哪个领域表现出来

先说说什么是第三次数学危机,
罗素提出这样一个问题:一个村里有一位理发师,他承诺愿为全村所有不愿给自己刮胡子的人刮胡子,那么按他的承诺他愿不愿为自己刮胡子呢?
假定他愿刮,那么按承诺他不能给自己刮;反过来,他不愿刮的话,就必须履行承诺给自己刮。这就是罗素悖论,由此引发第三次数学危机。
经过几代数学家的分析,运用各种逻辑推理手段,最终全球数学家达成共识,这个问题永远不可能被解决,于是第三次数学危机得以化解。

关于第四次数学危机,完全有可能发生。至于具体情况则很难预测,因为数学的理论性越来越强,其漏洞很难从实际中发现。
从前三次危机看,直接原因都是新悖论的出现。因此,第四次危机可能还是会由悖论引发。

阅读全文

与如何化解数学三大危机相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:747
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1364
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1423
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1037
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1008
武大的分析化学怎么样 浏览:1256
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1669
下列哪个水飞蓟素化学结构 浏览:1431
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1072