导航:首页 > 数字科学 > 如何用极限方法求高中数学题

如何用极限方法求高中数学题

发布时间:2022-05-22 03:21:53

Ⅰ 数学问题,极限的几种求法

二元函数求极限是高数中的难点,现归纳了6种求二元函数极限的方法,分别为:直接证明、先估值后证明、利用二元函数的连续性、用无穷小量与有界变量的乘积仍为无穷小量的结论、用重要极限limx>0sinx/x=1、用两边夹定理

Ⅱ 求函数极限的方法有几种具体怎么求

1、利用函数的连续性求函数的极限(直接带入即可)

如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。

Ⅲ 高等数学求极限题目 具体都有哪些做法 或者拿到一个极限题目首先要怎么入手呢

1. 代入法, 分母极限不为零时使用.先考察分母的极限,分母极限是不为零的常数时即用此法.
【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)
lim[x-->√3](x^2-3)/(x^4+x^2+1)
=(3-3)/(9+3+1)=0
【例2】lim[x-->0](lg(1+x)+e^x)/arccosx
lim[x-->0](lg(1+x)+e^x)/arccosx
=(lg1+e^0)/arccos0
=(0+1)/1
=1
2. 倒数法,分母极限为零,分子极限为不等于零的常数时使用.
【例3】 lim[x-->1]x/(1-x)
∵lim[x-->1] (1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞
以后凡遇分母极限为零,分子极限为不等于零的常数时,可直接将其极限写作∞.
3. 消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用.
【例4】 lim[x-->1](x^2-2x+1)/(x^3-x)
lim[x-->1](x^2-2x+1)/(x^3-x)
=lim[x-->1](x-1)^2/[x(x^2-1)
=lim[x-->1](x-1)/x
=0
【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)
lim[x-->-2] (x^3+3x^2+2x)/(x^2-x-6)
= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)]
= lim[x-->-2]x(x+1) / (x-3)
=-2/5
【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)
lim[x-->1](x^2-6x+8)/(x^2-5x+4)
= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)]
= lim[x-->1](x-2) /[(x-1)
=∞
【例7】lim[h-->0][(x+k)^3-x^3]/h
lim[h-->0][(x+h)^3-x^3]/h
= lim[h-->0][(x+h) –x][(x+h)^2+x(x+h)+h^2]/h
= lim[h-->0] [(x+h)^2+x(x+h)+h^2]
=2x^2
这实际上是为将来的求导数做准备.
4. 消去零因子(有理化)法,分母极限为零,分子极限也为零,不可分解,但可有理化时使用.可利用平方差、立方差、立方和进行有理化.
【例8】lim[x-->0][√1+x^2]-1]/x
lim[x-->0][√1+x^2]-1]/x
= lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]}
= lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]}
= lim[x-->0] x / [√1+x^2]+1]
=0
【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)]
÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]}
=lim[x-->-8](-x-8) [4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]}
=lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3]
=-2
5. 零因子替换法.利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用.常配合利用三角函数公式.
【例10】lim[x-->0]sinax/sinbx
lim[x-->0]sinax/sinbx
= lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx)
=1*1*a/b=a/b
【例11】lim[x-->0]sinax/tanbx
lim[x-->0]sinax/tanbx
= lim[x-->0]sinax/ sinbx*lim[x-->0]cosbx
=a/b
6. 无穷转换法,分母、分子出现无穷大时使用,常常借用无穷大和无穷小的性质.
【例12】lim[x-->∞]sinx/x
∵x-->∞ ∴1/x是无穷小量
∵|sinx|∞]sinx/x=0
【例13】lim[x-->∞](x^2-1)/(2x^2-x-1)
lim[x-->∞](x^2-1)/(2x^2-x-1)
= lim[x-->∞](1 -1/x^2)/(2-1/x-1/ x^2)
=1/2
【例14】lim[n-->∞](1+2+……+n)/(2n^2-n-1)
lim[n-->∞](1+2+……+n)/(2n^2-n-1)
=lim[n-->∞][n( n+1)/2]/(2n^2-n-1)
=lim[n-->∞][ (1+1/n)/2]/(2-1/n-1/n^2)
=1/4
【例15】lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50
lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50
= lim[x-->∞][(2x-3)/ (5x+1)]^20[(3x+2)/ (5x+1)]^30
= lim[x-->∞][(2-3/x)/ (5+1/ x)]^20[(3+2/ x)/ (5+1/ x)]^30
=(2/5)^20(3/5)^30=2^20*3^30/5^50

Ⅳ 函数极限数学题

这个例题

目的是:求函数在x=1处的极限,

做法:f(x)是分段函数,所以得先求f(x)在x=1处的左右极限,再根据左右极限是否相等得出函数在x=1处的极限。

***就以函数的左极限为例。第①步左右两边都是函数在x=1处的左极限,只是表示方法不同。所以你的疑问应该是出在②③步。第②步求左极限就得把f(x)具体出来,而函数左极限要从x=1的左边来逼近,所以这时f(x)等于X小于1时候的函数,也就是,f(x)=2x- 1。第③,因为初等函数y=2x- 1是连续函数,根据连续函数定义,这个时候x=1就可以直接带进去。最后:函数的极限要么就不存在要么等于一个常数,也就是说求出来的极限不可能是一个未知数。

希望对你有所帮助

Ⅳ 求数学高手:求极限的七种方法,最好有例子

您好!
1、利用定义求极限。
例如:很多就不必写了!
2、利用柯西准则来求!
柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于任意的自然数m有|xn-xm|<ε.
3、利用极限的运算性质及已知的极限来求!
如:lim(x+x^0.5)^0.5/(x+1)^0.5
=lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5
=1.
4、利用不等式即:夹逼原则!
例子就不举了!
5、利用变量替换求极限!
例如lim
(x^1/m-1)/(x^1/n-1)
可令x=y^mn
得原式=n/m.
6、利用两个重要极限来求极限。
(1)lim
sinx/x=1
??x→0
(2处弗边煌装号膘铜博扩)lim
(1+1/n)^n=e
??n→∞?
7、利用单调有界必有极限来求!
8、利用函数连续得性质求极限。
9、用洛必达法则求,这是用得最多的。
10、用泰勒公式来求,这用得也很经常。

Ⅵ 高等数学题求极限

利用重要极限[1+(1/x)]^x=e,如图:

Ⅶ 高数各种求极限方法

高等数学经典求极限方法
阅读人数:1510人页数:7页
求极限的各种方法
1.约去零因子求极限
x41
例1:求极限lim
x1x1
【说明】x1表明x与1无限接近,但x1,所以x1这一零因子可以约去。
(x1)(x1)(x21)
【解】limlim(x1)(x21)6=4
x1x1x1
2.分子分母同除求极限
x3x2
例2:求极限lim3
x3x1
【说明】

型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
11x3x21lim【解】lim3
x3x1x33x3
【注】(1) 一般分子分母同除x的最高次方;

0nn1
axan1xa0
(2) limnmm1xbxbxbmm10an
bn
mnmn mn
3.分子(母)有理化求极限
例3:求极限lim(x23x21)
x
【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】lim(x3x1)lim
x
2
2
(x23x21)(x23x21)
x3x1
2
2
x
lim
2x3x1
2
2
x
0
例4:求极限lim
x0
tanxsinx
3
x
【解】lim
x0
tanxsinxtanxsinx
lim 33x0xx(tanxsinx)
1/7
lim
x0
tanxsinx1tanxsinx1
lim 33x0x024xxtanxsinx
lim
1
【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解...........题的关键
4.应用两个重要极限求极限
11sinx
两个重要极限是lim1和lim(1)xlim(1)nlim(1x)xe,第
xnx0x0xnx
1
一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。
x1
例5:求极限lim xx1
x
【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑数部分。
1
,最后凑指X
2
x1122122x12【解】limlim1lim1x11e xx1xxx1x12
x
x
1x2a
例6:(1)lim12;(2)已知lim8,求a。 xxxxa
xx
5.用等价无穷小量代换求极限 【说明】
(1)常见等价无穷小有:
当x0 时,x~sinx~tanx~arcsinx~arctanx~ln(1x)~e1,
x
12b
x,1ax1~abx; 2
(2) 等价无穷小量代换,只能代换极限式中的因式; ..
1cosx~
(3)此方法在各种求极限的方法中应作为首选。 .....
xln(1x)

x01cosxxln(1x)xx
【解】 limlim2.
x01cosxx012
x2
sinxx
例8:求极限lim
x0tan3x
例7:求极限lim
1sinxxcosx11sinxxxlimlimlim【解】lim 322x0x0x0x0tan3x6x3x3x
2
2/7
6.用罗必塔法则求极限
lncos2xln(1sin2x)
例9:求极限lim
x0x2
0
或型的极限,可通过罗必塔法则来求。 0
2sin2xsin2x

lncos2xln(1sin2x)cos2x2 【解】limlimx0x02xx2
【说明】
lim
sin2x21
3 x02xcos2x1sin2x
【注】许多变动上显的积分表示的极限,常用罗必塔法则求解
例10:设函数f(x)连续,且f(0)0,求极限lim
x0
x
(xt)f(t)dt
x0
.
xf(xt)dt
【解】 由于

x
f(xt)dt
xtu0

x
f(u)()f(u),于是
x
x
x
lim

x
(xt)f(t)dt
x0
x0
xf(xt)dt
x
lim
xf(t)dttf(t)dt
xf(u)
0x
x0
=lim
x0
f(t)dtxf(x)xf(x)

x
=lim

x0
x
f(t)dt
0x
f(u)xf(x)f(t)dt
f(x)
=
x0
f(u)xf(x)

=lim
x0

x
f(u)
f(0)1
.
f(0)

Ⅷ 如何求函数的极限(高中)

求极限是没有公式的,只有方法:对于简单的如:y=lim(5x+3),当X趋于2时,把x=2代入,Y=13,对于复杂的,如这些类型:0/0,∞/∞,0*∞就要用洛毕达法则了.如Y=lim[(5x-5)/(2x-2)],当X趋于1时,用上面的代入法无法求出,因为变成了Y=lim(0/0),那就分子分母同时导数,变成了Y=lim(5/2)=5/2,这就是结果,至于
∞/∞,0*∞方法相同.

Ⅸ 高等数学求极限

变换一下即可,详情如图所示

有任何疑惑,欢迎追问

Ⅹ 高中数学求极限,求详!细!步骤和必!要!说!明!

第一步,分母作等价替换sinx~x,以简化运算;

第二步,用洛必达法则:分子分母分别求导;

第三步,化简;

第四步,分子作等价替换:sin2x~2x;

第五步,分子分母约去公因式2x;

第六步,取极限。

阅读全文

与如何用极限方法求高中数学题相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:747
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1364
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1423
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1037
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1008
武大的分析化学怎么样 浏览:1256
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1669
下列哪个水飞蓟素化学结构 浏览:1431
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1072