① 中考总复习,初三学生要怎么样掌握数学概念呢
对数学概念的理解、记忆、应用程度,决定着初中生的数学成绩。要学好数学,必须抓住主线,在概念这条主线上用功。
一、掌握概念
有些公式是在一定条件下才成立的。条件变了,则可能导出错误的结论。因此,要正确运用公式,就要弄清条件的来龙去脉。当公式的条件较多时,要弄清这些条件的原因,避免条件间发生交叉错误。数学的概念必须牢牢记住,只有记住了,才谈得上计算、运用和论证,否则是不可能有解题能力的。
初三学生学习数学,要注意培养浓厚的兴趣,积极展开思维的翅膀,充分发挥自己的主观能动性。
② 浅谈如何上好初中数学概念课
重新概念科学的引入是讲好概念的前提数学概念具有抽象性,新概念的引入要从学生的认知水平和实际情况出发,根据数学概念形成和发展过程,联系生产、生活实际。
③ 初中数学概念课有效教学设计一般分哪几个的步骤
1、引入概念,使学生感知概念,形成表象;
2、通过分析、抽象和概括,使学生理解和明确概念;
3、通过例题、习题使学生巩固和应用概念。
4、要对教学的效果进行全面的评价,根据评价的结果对以上各环节进行修改,以确保促进学生的学习,获得成功的教学。
对各学科教案的设计,都有一个基本要求。每一个教师在达到了基本要求之后,要写出学科特色和个人的教学风格来。
(3)初中数学概念怎么上扩展阅读:
教学设计具有以下特征:
1、教学设计是把教学原理转化为教学材料和教学活动的计划。教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
2、教学设计是实现教学目标的计划性和决策性活动。教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
3、教学设计是以系统方法为指导。教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
4、教学设计是提高学习者获得知识、技能的效率和兴趣的技术过程。教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。
④ 如何进行初中数学概念的教学
从实际引入。概念属于理性认识,它的形成依赖于感性认识,学生的心理特点则是容易理解和接受具体的感性认识,所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,比较容易揭示概念的本质和特征。
⑤ 如何上好初中数学“概念”课求解答
在初中数学教学中,加强概念教学是学好数学的基础,是理解数学知识的前提,是学好定理、公式、法则和数学思想的基础,同时也是提高解题能力的关键。因此,数学概念是数学知识的基础,是数学思想与方法的载体,所以概念教学尤为重要。 下面谈谈对概念教学的粗浅认识一、创设情境,注重概念引入要成功地上好一堂新概念课,注意力应集中到创设情景、设计问题上,让学生在教师创设的问题情景中,学会观察、分析、揭示和概括,教师要为学生思考、探索、发现和创新提供尽可能大的自由空间,帮助学生去体会概念的形成、发展和概括的过程。
⑥ 如何做好初中数学的概念教学
概念是客观事物本质属性在人们头脑中的反映。数学概念是反映现实世界的空间形式和数量关系的本质属性的思维形式。在中学数学教学中,正确理解数学概念是掌握数学知识的前提,是学好定理、公式、法则和数学思想的基础,搞清概念是提高解题能力的关键。只有对概念理解得深透,才能在解题中做出正确的判断。初中数学教学内容里有大量的数学概念,它既是数学教学的重要环节,又是数学学习的核心。因此,作为教师在教学中必须加强数学概念的教学。
一、做好概念的引入
1.从实际引入。概念属于理性认识,它的形成依赖于感性认识,学生的心理特点则是容易理解和接受具体的感性认识,所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,比较容易揭示概念的本质和特征。例如,讲“数轴”的概念时,教师可模仿秤杆上用点表示物体的重量。秤杆具有三个要素:①度量的起点;②度量的单位;③明确的增减方向。这样以实物启发人们用直线上的点表示数,从而引出了数轴的概念,让学生从先对概念的现实原型有所感受,再将抽象的特征浓缩成数学概念。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。
2.从旧概念的基础上引入。在教学新概念前,如果能对学生认知结构中原有的适当概念作一些类比引入新概念,则有利于促进新概念的形成。例如:在教学一元二次方程时,可先复习一元一次方程,因为一元一次方程是基础,一元二次方程是延伸,复习一元一次方程是合乎知识逻辑的,二者的差异仅在于未知数的最高次数不同,因此很容易建立一元二次方程的概念。
二、抓住概念的本质
1.揭示含义,突出关键词。数学概念严谨、准确、简练。教师的语言对于学生感知教材、形成概念具有重要的意义,因此要特别注意用词的严格性和准确性。教师要用生动、形象的语言讲清概念中关键的字、词、句的意义,这是指导学生掌握概念并认识概念的前提。
例如:“含有相同的字母,并且相同字母的指数也相同的项叫做同类项。”这个概念中,可抓住“相同”这一关键字作分析:出现了几次相同?相同的是什么?又如“最简二次根式”的概念中,要抓住满足的两个条件这些关键字眼。只有学生真正理解了概念,那么在解决问题的时候,才能得心应手,不会出现错误。
2.弄清概念的内涵和外延。数学概念的内涵反映了数学对象的本质属性,外延是数学概念所有对象的总和,对概念的深化必须从概念的内涵和外延上作深入的分析。剖析概念的内涵就是抓住概念的本质特征。例如教学正方形的概念时,已学过平行四边形、矩形、菱形的概念,教学时可通过对正方形与矩形、菱形的概念作比较分析,发现正方形概念的内涵中包括矩形和菱形概念的内涵,从而在外延关系上得出正方形是特殊的矩形和菱形,而它们又都是特殊的平行四边形。从对正方形概念的教学,转向对平行四边形、矩形、菱形和正方形之间的区别及其联系的分析,进而把平行四边形的知识系统化了。教学中注意引导学生从概念的内涵和外延上加以区别,找出它们的异同点,不仅有利于学生掌握数学概念,也有助于培养学生思维的广阔性,提高学生的辩证思维能力。
3.剖析变化,深化概念。数学概念都是从正面阐述,一些学生只从表面文字上理解,碰到具体的数学问题却难以做出正确的判断。所以在学生正面认识概念的基础上,可通过反例或变式从反面剖析数学概念,凸显隐蔽的本质要素,加深对概念理解的全面性。有些学生对概念的全面理解不可能一蹴而就,而是要经历“实践——认识——再实践——再认识”的过程,通过对后续知识的学习回过头来再对概念进行加深理解,遵循“循环反复,螺旋上升”的学习原则。
三、注重概念的运用,升华概念
例如,对一次函数概念的掌握,可通过下列练习:
①如果y=(m+3)x-5是关于x的一次函数,则m=()。
②如果y=(m+3)x-5是关于x的一次函数,则m=()。
③如果y=(m+3)x+4x-5是关于x的一次函数,则m=()。
学习数学概念的目的,就是用于实践,因此要让学生通过实际操作去掌握概念、升华概念。概念的获得是由个别到一般,概念的应用则是从一般到个别。学生掌握概念不是静止的,而是主动在头脑中进行积极思维的过程,它不仅能使已有知识再一次形象化、具体化,而且能使学生对概念的理解更全面、更深刻。
四、利用先进教学手段,使抽象概念具体化
有些数学概念对学生来说抽象难懂,是教学中的难点。而利用多媒体计算机的优势,使教学的表现形式更加形象生动,既有利于提高学生学习的积极性,又充分揭示了数学概念的形成与发展。例如学习两圆的位置关系时,通过多媒体的演示,让学生对抽象的概念有了更直观的体验与认识。
数学概念教学对整个数学教学起着至关重要的作用,学生透彻牢固地掌握概念是提高教学质量的关键。在平时的概念教学中应尝试运用不同的教学方法,揭示概念的形成与发展,做好概念的巩固和应用,完善学生的认知结构,发展学生的思维能力,使不同的人在数学上得到不同的发展。
⑦ 初中数学如何进行概念教学
您好。初中数学概念教学,需要设置情景,引入数学概念。然后是剖析概念,发现本质,最后梳理概念,解决实际生活中的问题
⑧ 初中数学如何进行概念教学 刘建
感悟概念不仅是一个概念,也是一种思想和方法,一种数学思维方法。
一、创设情境引入新概念
根据数学概念产生的方式及数学思维的一般方法,结合学生的认知特点,创设数学概念形成的问题情境。引入是概念教学的第一步,也是形成概念的基础。
1.从学生接触过的具体内容或现实模型引入。数学概念都有它的现实模型,对于初中数学概念的具体内容,学生在生活和学习过程中或多或少都有过接触。例如,教学“平行线”概念时,由于学生对平行线的实例了解较多,像书桌、课本的左右线或上下边缘等,这样引入学生很容易接受。
2.从数学知识发展的需要提出是一种有效的方法。如“正负数的概念”教学就可以从发展的需要引入,要交代清引入此概念的动机和目的。例如,观察家里米袋或者面粉袋上面的重量标志,并说明其中“+2”表示什么意思。
3.由已有概念引入新概念。很多概念是在旧概念的基础上发展而来的,教学中必须在学生熟悉旧概念的基础上引导他们建立起新概念,如算术根概念的教学,就可从已学习过的平方根的概念的基础上引入。
二、让学生体验概念的形成过程
概念引入时教师要鼓励学生猜想,让学生依据已有的材料和知识作出符合一定经验与事实的推测性想象,即概念在什么条件下蕴藏着,在什么背景下初露端倪,让学生经历数学家发现新概念的最初阶段。
2.几何概念是进行判断、推理和建立定理的依据,也是思维的起点,要向学生揭示概念间的相互联系及其本质属性。因此在几何概念教学中,不仅应注意概念与图形的结合,更要引导学生观察、发现、探索并概括出概念的形成过程。
3.让学生体验概念的形成过程关键在于“创设问题的情境”,即要创设一种使学生能积极思维的环境,使学生处于跃跃欲试的起跳点上;在于“给学生表达、交流的机会”。猜想作为数学想象表现形式的最高层次,属于创造性想象,是推动数学发展的强大动力,因此,培养学生敢于猜想的习惯,是形成数学直觉,发展数学思维,获得数学发现的基本素质,也是培养创造性思维的重要因素。
三、加强概念的分析
概念是反映客观事物本质属性的思维形式,在内容上可分为内涵和外延两个方面。内涵是指概念的含义,即反映事物的本质属性;外延是指概念的适用范围。
1.内涵讲清,外延讲透,把概念的本质属性向学生讲清楚,把本质属性反映的全体对象揭示出来,切忌不要让学生死背定义。
2.在概念意义上逐句加以推敲、分析,尤其注意括号内的条件。
3.从不同方面启发学生理解和掌握所学概念,沟通知识的内在联系。
(1)把数学概念渗透在问题之中,不要机械地讲授数学概念。通过对一些问题的解答,可以加深对概念的理解,且这种理解在深度和广度上都是概念正面分析所达不到的。
(2)用对比的方法分清易混淆的概念。讲清数学概念之间的区别,使原来学生中存在一些对概念模糊不清的地方得到较好的澄清和纠正。
(3)运用反例强化概念。在教学中,用学生多发的共性错误范例,去讲解、强化概念,从而透彻理解概念。如讲函数概念后,可让学生思考函数y=x与y=|x|是不是相同的函数?学生很容易把它们答成是相同的函数的错误结论。
⑨ 中学数学概念教学的基本方式有哪些
一、情境引导,发现本质 概念是对研究对象的本质属性的概括.而本质属性的概括的过程是一个由感性到理性、由特殊到一般的思维过程,要使学生获得清晰的概念,就要在概念教学中充分开展这样一个过程.按照初中生的年龄特征,要尽量联系学生的实际生活经验引入概念,让学生在不知不觉中对概念潜移默化,而不是照本宣科,死记词句.例如,在教学平面内点的直角坐标的概念时,实质上是建立在平面内点和有序实数对的一一对应关系基础之上.我们可以借助于学生们看电影时找座位等一些学生所熟悉的实例来引入课题,让学生在无意识状态下进入新的概念学习当中,而不是就书认书,硬背概念.当然,要注意这样做的本身并不是目的,它只是实现教学目标的一种手段,是为了用形象的实例来探讨研究对象的抽象本质属性,因而应把精力放在如何把感性认识上升到理性认识这一过程上来.另外,生活实例并不等于数学概念,有的包括非本质属性,而有的遗漏了某些本质属性,因此教者在举例时必须切实,防止学生对概念的曲解,走向另一个极端. 此外,在概念的教学过程中,要在概念的系统中形成概念,而不是突如其来地灌给学生.从原有的概念基础上引入,既要注意从学生已有的知识的基础上引入新概念,又要充分揭示新知识与旧概念的矛盾,使学生认识到旧概念的局限性,学习新概念的必要性.这就要求我们教者在教学前要很好地分析新概念在概念系统中的位置.例如,算术根在教材中的位置,它的前面是方根,后面是根式.它是为了便于研究根式的性质和进行根式的运算,因为正数的平方根有两个值,它们互为相反数.因此研究二次根式的性质只要研究算术平方根的性质就可以了.算术根是为了解决实数范围内方根运算的可行和单值而出现的,从而为研究根式铺平了道路,它在概念系统中起到了承上启下的作用. 二、呈现定义,促进理解 概念的定义是我们所研究对象的本质属性的概括,措辞更是精炼,每个字词都有其重要的作用.为了深刻领会概念的含义,教师不仅要注意对概念论述时用词的严密性和准确性,同时还要及时纠正某些不当及概念认识上的错误,这样有利于培养学生严密的逻辑思维习惯,逐步养成对定义的深入钻研,逐字逐句加以分析,认真推敲的良好习惯. 例如,在讲解等腰三角形概念时,一定要强调概念中的有两条边相等的“有”字,而不是只有两条边相等的“只有”二字.前面的有两条边相等包括了两种情况:一是只有两条边相等的等腰三角形,即腰与底不相等的等腰三角形;二是三条边相等的等腰三角形又叫等边三角形,而后面的仅仅涉及到一种情况,排除了等边三角形也是等腰三角形的这一特殊情况.又如,“a、b、c不全等于零”和“a、b、c全不等于零”,这两条定义字词都一样,只是位置不同,但意义截然不同.再如,不在同一直线上的三点确定一个圆,若改写成三点确定一个圆,得出一个新命题,它既包括了三点在同一直线上也包括了三点不在同一直线上的两种情形,而在同一直线上的三点不可能确定一个圆,即圆上任意三点都不在同一直线上.故将不在同一直线上三点确定一个圆写成三点确定一个圆是不成立的.因此,在讲述此概念时应突出“不在同一直线上”这句话. 三、新旧联系,正反对照 有些概念单纯地讲学生难以接受,难以掌握.但是把某些相关或相对的概念放在一起进行类比、对照,使学生既了解它们之间的联系又注意到它们的区别,会使学生茅塞顿开,另辟蹊径.两个概念之间的关系,可分为相容和不相容两种,相容又可分为同一、交叉和从属三种关系.例如,正整数和自然数是同一关系,平方根和算术平方根是从属关系,方根和根式是交叉关系,矩形和菱形是交叉关系,平行四边形和梯形是不相容关系.又如:讲“仰角”和“俯角”时,将这两个概念进行对照比较,就不难区别谁是“仰角”,谁是“俯角”.再如,“圆心角”与“圆周角”,同学们已经知道了“圆心角”是顶点在圆心的角,由此及彼,大部分学生就可以得出“圆周角”的定义:顶点在圆上的角叫“圆周角”这又恰恰错了.此时教师再将“圆周角”的定义叙述出来,学生就会觉得恍然大悟.这样通过比较“圆心角”与“圆周角”的概念一目了然,清清楚楚. 对数学概念的深刻理解,是提高学生解题能力的基础;反之,也只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延.课本中直接运用概念解题的例子很多,教学中要充分利用.同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻. 四、深入剖析,揭示本质 数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延.也就是从质和量两个方面来明确概念所反映的对象.如,掌握垂线的概念包括三个方面:①了解引进垂线的背景:两条相交直线构成的四个角中,有一个是直角时,其余三个也是直角,这反映了概念的内涵.②知道两条直线互相垂直是两条直线相交的一个重要的特殊情形,这反映了概念的外延.③会利用两条直线互相垂直的定义进行推理,知道定义具有判定和性质两方面的功能.另外,要让学生学会运用概念解决问题,加深对概念本质的理解.