A. 2022考研数学二的考试范围是什么
2022考研数学二的考试范围是:
1、高等数学:函数、极限、连续、一元函数微积分学、多元函数的微积分学、常微分方程。
同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。
2、线性代数:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。
数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。
相关如下
考研数学二复习办法
整个数学复习,高等数学是占分值最大的,复习的时候,要以高等数学为主。同时线性代数和概率为辅,不管原来熟悉不熟悉,必须要把线性代数和概率统计要复习好。
高等数学它比较灵活的地方,主要集中在几章,一个是所谓的未定式极限的运算,再有一个是微分总值定理,还有积分的应用,特别是定积分在几何上的应用,高等数学的下半部分多元函数微分法、求偏导数,还有数学的线面积分,这都是我们特别应该注意的,应该出大题。
B. 考研 数学二 具体考什么内容
考研数学二的具体内容会因为地点、时间、政策等的变化而有所变化,但考试的大纲一般包括高等数学和线性代数。
数二大纲:
考试科目:高等数学、线性代数
形式结构:
1、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟。
2、答题方式
答题方式为闭卷、笔试。
3、试卷内容结构
高等数学 78%
线性代数 22%
4、试卷题型结构
试卷题型结构为:
单项选择题选题 8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分
高等数学(函数、极限、连续):
考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,
函数关系的建立 数列极限与函数极限的定义及其性质 ,函数的左极限和右极限 ,无穷小量和无穷大量的概念及其关系 ,无穷小量的性质及无穷小量的比较 ,极限的四则运算,
极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。
数三大纲:
考试科目:微积分、线性代数、概率论与数理统计
形式结构:
试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
答题方式:
答题方式为闭卷、笔试.
试卷内容结构:
微积分 56%
线性代数 22%
概率论与数理统计 22%
试卷题型结构为:
单项选择题选题8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分
考研数学 网络
C. 研究生考试中数学二主要考试内容包含哪些
1、考研科目数学二的主要内容:
(1)高数:极限、导数与导数的应用、中值定理、不定积分、定积分、定积分的应用、多元函数微分学、二重积分、常微分方程。
(2)线代:行列式、矩阵、向量组的相关性与秩、线性方程组、特征值和特征向量。
2、考数二的一般都是专硕,当然也有一些专硕的是考数一的。纺织科学与工程、轻工技术与工程、农业工程、林业工程、控制工程、集成电路、通信工程等等。
(3)数学二高数下册考什么扩展阅读:
1、数一要考的内容有:
高等数学:函数、极限、连续、一元函数微积分学、向量代数与空间几何、多元函数微积分学、级数、常微分方程。
线代:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。
概率论与数理统计:随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验。对于考数一的专业也是和数二、数三不同的。大部分考数一的都是学术型专业。力学、机械工程、光学工程、仪器科学与技术、动力工程、电气工程、控制科学与工程等等专业。
2、数三要考的内容有:
高数:函数、连续、一元函数微积分学、多元函数微积分学、级数、常微分方程和差分方程线代:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。
概率:随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验考数三的专业一般都是偏向文科性质的专业,经济类管理类较多。统计学、数量经济学、国民经济学、财政学、金融学、企业管理、技术经济及管理等等专业。
D. 考研数学二考什么
考研数学二考什么?考研数学二考什么内容?考研数学二考试科目:只考高数(78%)和线代(22%) ,也就是不考概率。
高数同济四版: (带星号不考)
上册:打星号的不考,第二章第八节不考,第三章第十节不考,第五章第六节不考,第七章不考,其他都考 。
下册:打星号的不考,第八章第六、七节不考,第九章第三、四、五节不考,第十章,第十一章不考,第十二章5,6,11,12,13节不考。
总的来说,上册考的多下册只考三章,而且不是全考,但微分方程比较繁 。线代:1-5章全考,第六章不考。1.曲面和曲线积分不考。2.空间解析几何不考。3.级数不考。3.三重积分不考。
以上是考研君整理的“考研问答:考研数学二考什么?”相关内容,希望对各位小伙伴们有所帮助,更多考研专业信息尽在考研考研问答频道!
E. 考研数二高等数学要考哪些内容
数学二考试内容:
①高等数学(函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程)。
②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型)。
③概率论与数理统计(随机事件和概率、随机变量及其概率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
考研数学二形式结构:
1、试卷满分及考试时间。
试卷满分为150分,考试时间为180分钟。
2、答题方式。
答题方式为闭卷、笔试。
3、试卷内容结构。
高等数学:78%。
线性代数:22%。
4、试卷题型结构。
单项选择题选题:8小题,每题4分,共32分。
填空题:6小题,每题4分,共24分。
解答题(包括证明题):9小题,共94分。
以上内容参考:网络-考研数学二大纲
F. 考研考数二,具体考哪些,哪些章节
高等数学考点:
第一章 函数、极限、连续
等价无穷小代换、洛必达法则、泰勒展开式
求函数的极限
函数连续的概念、函数间断点的类型
判断函数连续性与间断点的类型
第二章 一元函数微分学
导数的定义、可导与连续之间的关系
按定义求一点处的导数,可导与连续的关系
函数的单调性、函数的极值
讨论函数的单调性、极值
闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用
第三章 一元函数积分学
积分上限的函数及其导数
变限积分求导问题
有理函数、三角函数有理式、简单无理函数的积分
计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分
第四章 多元函数微积分学
隐函数、偏导数、全微分的存在性以及它们之间的因果关系
函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系
二重积分的概念、性质及计算
二重积分的计算及应用
第五章 常微分方程
一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题
线性代数考点:
第一章 行列式
行列式的运算
计算抽象矩阵的行列式
第二章 矩阵
矩阵的运算
求矩阵高次幂等
矩阵的初等变换、初等矩阵
与初等变换有关的证命题
第三章 向量
向量组的线性相关及无关的有关性质及判别法
向量组的线性相关性
线性组合与线性表示
判定问量能否由向量组线性表示
第四章 线性方程组
齐次线性方程组的基础解系和通解的求法
求齐次线性方程组的基础解系、通解
第五章 矩阵的特征值和特征向量
实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题
相似变换、相似矩阵的概念及性质
相似矩阵的判定及逆问题
第六章 二次型
二次型的概念
求二次型的矩阵和秩
合同变换与合同矩阵的概念
拓展资料:
数学二形式与结构:
(一)试卷满分及考试时间
1.试卷满分为150分
2.考试时间为180分钟。
(二)答题方式
1.答题方式为闭卷
2.笔试。
(三)试卷内容结构
1.高等数学 78%
2.线性代数 22%
(四)卷题型结构
1.试卷题型结构为:
单项选择题 8小题,每题4分,共32分
2.填空题 6小题,每题4分,共24分
3.解答题(包括证明题) 9小题,共94分
资料链接:网络--考研数学二
G. 数二包括高数下哪些内容
数二的高等数学下里
主要就是多元函数微积分学,
还有常微分方程
而且没有三重积分、曲线积分与曲面积分
所以相对简单一下的
H. 考研数学二高数第二册考哪些内容
数学二考察高等数学和线性代数两部分,分别占总分的78%和22%。
根据考研大纲,数二考察144个考点,不考察:向量代数与空间解析几何、三重积分、曲线积分、曲面积分以及无穷级数。根据每年的考研真题,数学二只覆盖考试大纲的82.5%,所以复习时要懂得抓重点,数学二重点考察的内容是:曲率、弧长以及质心问题。在复习时要重点关注。
I. 高数下册主要学些什么哪些是重点
高等数学的下册主要是应用部分,有向量和空间解析几何,
级数、多元微分(偏导数和全微分)、多重积分(二重积分、三重积分、曲线积分和曲面积分)等内容。总的说内容的连续性不如上册强。各章节之间的关联不是太强。其中向量和空间解析几何是重点,需要学好,这是基础。重点难点在偏导数
全微分和二重积分三重积分的求法和相关面积体积的计算,级数里有正向级数审敛法,幂级数和傅里叶级数,这些都是考试的重点和难点。