⑴ 信号与系统
这是一门理论基础课,很少会直接涉及实际应用,在实际应用中通过信号处理算法实现许多的应用,而信号与系统与数字信号处理就是设计算法及滤波器的基础。
信号与系统课程 总体概述
1 信号分析部分
第2章介绍信号时域分析,首先介绍连续和离散的基本信号在时域的描述,这些基本信号在信号与系统课程中占有重要地位,任何复杂信号都可以分解成这些基本信号之和,通过对这些基本信号的特征和通过线性系统的特征来分析复杂信号通过系统特性。信号分解思想也是时域分析的主要内容并贯穿本课程始终,时域分析还介绍信号在时域的一些基本运算,如相加、相乘、微分、积分、卷积,这些运算是对工程实际现象的描述,也是系统分析的重要工具。
第3章是信号的频域分析,本章是本课程的最重要和最核心的内容,当代通信系统和信号处理的发展处处伴随着傅里叶变换的精心运用。首先,从周期信号的傅里叶级数(FS:
Fourier
Series)展开,认识到任何周期信号本质上都是由一系列的谐波构成的,通过将这些谐波由频率、幅度和相位的图形描述,建立周期信号频谱的概念。然后,由周期信号趋于无穷大时其频谱的变化,建立频谱密度函数的概念,并导出非周期信号的傅里叶变换(FT:Fourier
Transform)。傅里叶变换的性质揭示了信号在时域的改变相应地引起其频域的变化。其次,应用傅里叶变换的性质和信号的频域特性,介绍采样定理,
采样定理是连续时间信号和离散时间信号的一个主要的桥梁。最后,对离散时间信号的频谱分析引出离散时间傅里叶变换(DTFT: Discrete Time
Fourier Transform)定义。为了利用计算机来计算信号的频谱,必须对信号和其频谱都离散化和取有限长度处理来近似地进行 ,给出离散傅里叶变换(DFT:
Discrete Fourier Transform)的定义,并给出工程上快速计算离散傅里叶变换的算法, 即快速傅里叶变换(FFT: Fast Fourier
Transform)的概念。
2 系统分析部分
本课程系统分析的对象限于线性时不变系统,系统分析包括建立描述系统的数学模型并根据给定的激励和初始状态求解系统的响应。建立系统的数学模型有两大类方法,第一类是外部法,这种方法只着眼于系统的输入与输出关系,把系统看成一个“黑匣子”,不关心系统内部的变化情况,仅用输入信号和输出信号之间满足的数学关系来描述,得到的数学模型是线性常系数微分方程或差分方程。第二类方法是内部法,这种方法把系统的输入和输出信号与系统内部的状态变量建立联系,用它们所满足的方程组来描述系统,即建立系统的状态方程数学模型。外部法注重系统的功能和特性,只适合于单输入-单输出系统,其数学模型仅限于线性时不变系统。内部法不仅体现输入输出信号之间的变化,而且还考虑系统内部的变化过程。状态方程描述适合于多输入-多输出系统,且不限于线性和时不变系统,也可以应用到非线性和时变系统。系统响应的求解可以在时域直接进行,也可以通过拉普拉斯变换和Z变换数学工具在变换域求解,而在变换域求系统的响应有明显的优势。本课程充分利用连续系统和离散系统的对偶或类比关系,以完全并行的方式介绍这两类系统的分析方法。
第4章讨论线性时不变连续时间系统和离散时间系统的时域分析方法。时域分析是在时间域建立系统的数学模型并进行求解,时域分析物理概念清楚,结果直观明了,是变换域分析的基础。从工程实用出发,将系统的响应分为零输入响应和零状态响应来分别求解,并引出冲激响应和阶跃响应的重要概念。
第5章介绍系统的频域分析,以信号无失真传输条件和信号滤波为核心,讨论无失真传输系统和理想滤波器的频率特性,也简要介绍实际滤波器的频率特性。通过调制解调与频分复用学习,进一步理解信号在频域描述方法。本章是第3章内容的延续和傅里叶变换的进一步应用,系统的频域分析更注重系统改变输入信号的频谱,从而达到系统对信号传输与处理的目的。
第6章介绍连续系统的拉普拉斯变换分析,称为复频域分析或S域分析。用拉普拉斯变换作为数学工具,将描述系统的微分方程变换到S域,使其成为代数方程,这种转化不仅求解系统的响应容易,而且还可以同时求得系统的零状态响应和零输入响应。S域分析还可直接应用电路的S域模型直接求解。此外,系统函数在S域的零极点也提供了系统稳定性与否的信息。
第7章介绍离散系统的Z变换域分析。Z域分析以Z变换数学工具,将差分方程变换到Z的代数方程,并且可以同时求得离散系统的全响应。系统函数在Z域的零极点也提供了系统稳定性与否的信息。
第8章介绍连续时间系统和离散时间系统的状态变量分析法,包括状态方程和输出方程的建立,状态方程的时域和变换域求解方法,并简要地介绍状态变量法与输入输出描述方法之间的联系。
3 信号分析与系统分析工具部分
第9章立足于信号分析与系统分析,介绍与其密切相关的MATLAB的应用方法,其内容包括MATLAB用于信号与波形的产生、信号的频域分析,MATLAB用于系统时域分析、S域分析、Z域分析、状态变量分析,系统模型及其Simulink仿真。
⑵ 有关信号与系统的这题怎么求解!
信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入、输出和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是这个所谓的系统带来的输出信号与输入信号的数学关系式之间是线性的运算关系。
因此,实际上都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。
卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。
参考资料:
⑶ 关于信号与系统 数字信号处理求教
简单的说,国内目前比较权威的教材有两套,一个是MIT奥本海默的《信号与系统》,还有就是清华郑君里的了。这两套书的侧重点有所区别。比如说进行时域和某个域变换的时候,前者主要探讨双边,而后者主要研究单边的情况等等。你可以了解一下你考试的需要,结合需要来选择。这两套教材都是非常严谨的,但是也对数学基础要求比较高。
至于你说的视频,可以适当看一下。推荐你两个搜视频的地方:一个是电驴,一个就是超星学术视频网。后者我注册的时候是可以免费VIP三个月的呵呵。
一般来说都是先学信号再学DSP,那么如果学郑君里的书这个过渡会比较好的,还有就是该书第十一章是自动控制的一些内容,与信号相衔接,应该是比较适合你的。
欢迎追问~
⑷ 信号与系统怎么学,怎么复习啊
信号与系统课程其实是非常简单的基础课,可以认为是一门专业数学课,需要的基础就是高等数学和电路基础,要想学好,需要注意以下问题:
扎实掌握基础,把握三个重要问题:各个基本信号及其响应,信号的分解,LTI系统的分析方法,此外一定要多加练习 重点是:基本信号的表示,系统的时域分析,和变换域分析,系统因果性、稳定性判断,系统函数,信号流图,状态方程
⑸ 如何学好信号与系统
1、就是要进行阶段性复习,注意是阶段性复习,不是期末复习。
每一章学习完之后会进行一些系统的梳理和习题的练习。这样既能够理清整章的脉络,又能做练习巩固。推荐习题集是郑君里老师的《信号与系统习题解析》,对课程的理解很有帮助。
2、要理清各个章节之间的联系,并与我们之前所学的一些知识,学科建立起联系,这样才能真正的把《信号与系统》这门课程学透。
信号与系统如此难学是因为:
1、它需要足够的高等数学基础:常系数微分方程的求解,微积分运算。
2、它需要一定的复变函数基础:复数运算,积分变换。
3、它比较抽象:和以往你学过的模电数电完全不一样。
4、它物理意义难以把握:会让你有一种错觉,他是数学在工科上的分支。
5、它的自身运算又有不同于数学的地方,例如:微分方程带0-值算待定系数在这里就行不通了。
⑹ 怎么学习信号与系统
信号与系统是通信和电子信息类专业的核心基础课,其中的概念和分析方法广泛应用于通信、自动控制、信号与信息处理、电路与系统等领域。
本课程从概念上可以区分为信号分解和系统分析两部分,但二者又是密切相关的,根据连续信号分解为不同的基本信号,对应推导出线性系统的分析方法分别为:时域分析、频域 分析和复频域分析;离散信号分解和系统分析也是类似的过程。
本课程采用先连续后离散的布局安排知识,可先集中精力学好连续信号与系统分析的内容,再通过类比理解离散信号与系统分析的概念。状态分析方法也结合两大块给出,从而建立完整的信号与系统的概念。
信号与系统课程研究信号与系统理论的基本概念和基本分析方法。初步认识如何建立信号与系统的数学模型,经适当的数学分析求解,对所得结果给以物理解释、赋予物理意义。
课程范围限定于确定性信号(非随机信号)经线性、时不变系统传输与处理的基本理论。本课程涉及的数学内容包括微分方程、差分方程、级数、复变函数、线性代数等。
本课程与先修课程"电路分析基础"联系密切,电路分析基础课程是从电路分析的角度研究问题,本课程则从系统的观点进行分析。
本课程的主要内容包括绪论、连续系统的时域分析、傅里叶变换、拉普拉斯变换、连续时间系统的s域分析、离散时间系统的时域分析、z变换、离散时间系统的z域分析等。
网络转!
⑺ 信号与系统怎么学啊
其实并不难,只要有一定的数学功底就一定没问题。高等数学里面的微分方程和傅立叶级数是基础,还有复变函数也很有用,另外物理里面学的有关电阻、电容电感的原理也要有一定的了解。不过如果是就要考试了的话恐怕你不一定有那么多时间去学了。加油吧!其实这门课真的不难,我当年在短短两三个月之内这门课成绩从二三十分提高到了80多,也没费什么劲。
⑻ 信号与系统需要什么数学基础请具体回答!
需要:复变函数与积分变换
高等数学级数部分
信号与线性系统分析,简称信号与系统,是面向电子信息学科的专业基础课,它的基本概念、基本分析方法已经渗透到了信息与通信工程,电路与系统,集成电路工程,生物医学工程,物理电子学,导航、制导与控制,电磁场与微波技术,水声工程,电气工程,动力工程,航空工程,环境工程等领域。
⑼ 信号与系统基础怎么学
《信号与系统基础》在参考国外知名大学课程设置、结合已有教材编写经验的基础上,全面介绍了信号与系统的基本概念、基本理论和分析方法。
第1章 绪论
第2章 连续时间信号和系统
第3章 连续时间信号的傅里叶分析
第4章 连续LTI系统的复频域分析
第5章 离散时间信号和系统
第6章 离散LTI系统的Z域分析
第7章 系统的状态变量分析
经验一: 1、不妨给自己定一些时间限制。连续长时间的学习很容易使自己产生厌烦情绪,这时可以把功课分成若干个部分,把每一部分限定时间,例如一小时内完成这份练习、八点以前做完那份测试等等,这样不仅有助于提高效率,还不会产生疲劳感。如果可能的话,逐步缩短所用的时间,不久你就会发现,以前一小时都完不成的作业,现在四十分钟就完成了。 2、不要在学习的同时干其他事或想其他事。一心不能二用的道理谁都明白,可还是有许多同学在边学习边听音乐。或许你会说听音乐是放松神经的好办法,那么你尽可以专心的学习一小时后全身放松地听一刻钟音乐,这样比带着耳机做功课的效果好多了。 3、不要整个晚上都复习同一门功课。我以前也曾经常用一个晚上来看数学或物理,实践证明,这样做非但容易疲劳,而且效果也很差。后来我在每晚安排复习两三门功课,情况要好多了。 4、除了十分重要的内容以外,课堂上不必记很详细的笔记。如果课堂上忙于记笔记,听课的效率一定不高,况且你也不能保证课后一定会去看笔记。课堂上所做的主要工作应当是把老师的讲课消化吸收,适当做一些简要的笔记即可。 经验二: 学习效率这东西,我也曾和很多人谈起过。我们经常看到这样的情况:某同学学习极其用功,在学校学,回家也学,不时还熬熬夜,题做得数不胜数,但成绩却总上不去其实面对这样的情况,我也是十分着急的,本来,有付出就应该有回报,而且,付出的多就应该回报很多,这是天经地义的事。但实际的情况却并非如此,这里边就存在一个效率的问题。效率指什么呢?好比学一样东西,有人练十次就会了,而有人则需练一百次,这其中就存在一个效率的问题。 如何提高学习效率呢?我认为最重要的一条就是劳逸结合。学习效率的提高最需要的是清醒敏捷的头脑,所以适当的休息,娱乐不仅仅是有好处的,更是必要的,是提高各项学习效率的基础。那么上课时的听课效率如何提高呢?以我的经历来看,课前要有一定的预习,这是必要的,不过我的预习比较粗略,无非是走马观花地看一下课本,这样课本上讲的内容、重点大致在心里有个谱了,听起课来就比较有针对性。预习时,我们不必搞得太细,如果过细一是浪费时间,二是上课时未免会有些松懈,有时反而忽略了最有用的东西。上课时认真听课当然是必须的,但就象我以前一个老师讲的,任何人也无法集中精力一节课,就是说,连续四十多分钟集中精神不走神,是不太可能的,所以上课期间也有一个时间分配的问题,老师讲有些很熟悉的东西时,可以适当地放松一下。另外,记笔记有时也会妨碍课堂听课效率,有时一节课就忙着抄笔记了,这样做,有时会忽略一些很重要的东西,但这并不等于说可以不抄笔记,不抄笔记是不行的,人人都会遗忘,有了笔记,复习时才有基础,有时老师讲得很多,在黑板上记得也很多,但并不需要全记,书上有的东西当然不要记,要记一些书上没有的定理定律,典型例题与典型解法,这些才是真正有价值去记的东西。否则见啥记啥,势必影响课上听课的效率,得不偿失。 作题的效率如何提高呢?最重要的是选"好题",千万不能见题就作,不分青红皂白,那样的话往往会事倍功半。题都是围绕着知识点进行的,而且很多题是相当类似的,首先选择想要得到强化的知识点,然后围绕这个知识点来选择题目,题并不需要多,类似的题只要一个就足够,选好题后就可以认真地去做了。作题效率的提高,很大程度上还取决于作题之后的过程,对于做错的题,应当认真思考错误的原因,是知识点掌握不清还是因为马虎大意,分析过之后再做一遍以加深印象,这样作题效率就会高得多。 评:夏宇同学对于听课和做题的建议,实际上反应了提高学习效率的一个重要方法--"把劲儿使在刀刃上",即合理分配时间,听课、记笔记应抓住重点,做习题应抓住典型,这就是学习中的"事半功倍"。 经验三: 学习效率是决定学习成绩的重要因素。那么,我们如何提高自己学习效率呢? 第一点, 要自信。很多的科学研究都证明,人的潜力是很大的,但大多数人并没有有效地开发这种潜力,这其中,人的自信力是很重要的一个方面。无论何时何地,你做任何事情,有了这种自信力,你就有了一种必胜的信念,而且能使你很快就摆脱失败的阴影。相反,一个人如果失掉了自信,那他就会一事无成,而且很容易陷入永远的自卑之中。 提高学习效率的另一个重要的手段是学会用心。学习的过程,应当是用脑思考的过程,无论是用眼睛看,用口读,或者用手抄写,都是作为辅助用脑的手段,真正的关键还在于用脑子去想。举一个很浅显的例子,比如说记单词,如果你只是随意的浏览或漫无目的地抄写,也许要很多遍才能记住,而且不容易记牢,而如果你能充分发挥自己的想象力,运用联想的方法去记忆,往往可以记得很快,而且不容易遗忘。现在很多书上介绍的英语单词快速记忆的方法,也都是强调用脑筋联想的作用。可见,如果能做7到集中精力,发挥脑的潜力,一定可以大大提高学习的效果。 第二点, 另一个影响到学习效率的重要因素是人的情绪。我想,每个人都曾经有过这样的体会,如果某一天,自己的精神饱满而且情绪高涨,那样在学习一样东西时就会感到很轻松,学的也很快,其实这正是我们的学习效率高的时候。因此,保持自我情绪的良好是十分重要的。我们在日常生活中,应当有较为开朗的心境,不要过多地去想那些不顺心的事,而且我们要以一种热情向上的乐观生活态度去对待周围的人和事,因为这样无论对别人还是对自己都是很有好处的。这样,我们就能在自己的周围营造一个十分轻松的氛围,学习起来也就感到格外的有精神。 经验四: 很多学生看上去很用功,可成绩总是不理想。原因之一是,学习效率太低。同样的时间内,只能掌握别人学到知识的一半,这样怎么能学好?学习要讲究效率,提高效率,途径大致有以下几点: 一、每天保证8小时睡眠。 晚上不要熬夜,定时就寝。中午坚持午睡。充足的睡眠、饱满的精神是提高效率的基本要求。 二、学习时要全神贯注。 玩的时候痛快玩,学的时候认真学。一天到晚伏案苦读,不是良策。学习到一定程度就得休息、补充能量。学习之余,一定要注意休息。但学习时,一定要全身心地投入,手脑并用。我学习的时侯常有陶渊明的"虽处闹市,而无车马喧嚣"的境界,只有我的手和脑与课本交流。 三、坚持体育锻炼。 身体是"学习"的本钱。没有一个好的身体,再大的能耐也无法发挥。因而,再繁忙的学习,也不可忽视放松锻炼。有的同学为了学习而忽视锻炼,身体越来越弱,学习越来越感到力不从心。这样怎么能提高学习效率呢? 四、学习要主动。 只有积极主动地学习,才能感受到其中的乐趣,才能对学习越发有兴趣。有了兴趣,效率就会在不知不觉中得到提高。有的同学基础不好,学习过程中老是有不懂的问题,又羞于向人请教,结果是郁郁寡欢,心不在焉,从何谈起提高学习效率。这时,唯一的方法是,向人请教,不懂的地方一定要弄懂,一点一滴地积累,才能进步。如此,才能逐步地提高效率。 五、保持愉快的心情,和同学融洽相处。 每天有个好心情,做事干净利落,学习积极投入,效率自然高。另一方面,把个人和集体结合起来,和同学保持互助关系,团结进取,也能提高学习效率。 六、注意整理。 学习过程中,把各科课本、作业和资料有规律地放在一起。待用时,一看便知在哪。而有的学生查阅某本书时,东找西翻,不见踪影。时间就在忙碌而焦急的寻找中逝去。我认为,没有条理的学生不会学得很好。 最后:学习效率的提高,很大程度上决定于学习之外的其他因素,这是因为人的体质、心境、状态等诸多因素与学习效率密切相关.
⑽ 数电和信号与系统怎么复习啊,一点没学,无从下手
数电模电学起来简单些,也比较直观些。 信号与系统相对难一点和抽象一点,尤其是对数学的要求。
作为考研,难易都是相对的。要简单大家都简单,要难大家都难。如果动手能力强,就选数电模电,抽象思维好点,就选信号系统。
但从长远的看,它们是相辅相成的。信号与系统 能帮助你更深更高层次的领悟这一类问题,而数电模点可以更形象、更具体、更实际的理解问题和应用。