导航:首页 > 数字科学 > 漏刻体现什么数学思想

漏刻体现什么数学思想

发布时间:2022-05-23 11:21:56

A. 高中数学中都有哪些数学思想

高中数学怎么学?高中数学难学吗?

数学这个科目,不管是对于文科学生还是对于理科学生.都是比较重要的,因为他是三大主课之一,它占的分值比较大.要是数学学不好,你可能会影响到物理化学的学习,因为那些学科都是要通过计算.然而,这些计算也都是在数学里面.高中数学怎么学?有哪些好的方法?

老师让孩子上黑板做题

数学担负着培养孩子的运算能力,还有孩子应用知识的能力.高中数学怎样学?还是要看学生对数学的理解程度.学生要有自己的学习方法,你不光要掌握老师上课的内容,在下课之后还要及时巩固,加深.

B. 数学思想有哪些

常用的数学思想(数学中的四大思想)

  1. 函数与方程的思想 用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去。

  2. 数形结合思想 在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形”在一定条件下可以相互转化、相互渗透。

  3. 分类讨论思想 在数学中,我们常常需要根据研究对象性质的差异。分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略,引起分类讨论的因素较多,归纳起来主要有以下几个方面:
    (1)由数学概念、性质、定理、公式的限制条件引起的讨论;
    (2)由数学变形所需要的限制条件所引起的分类讨论;
    (3)由于图形的不确定性引起的讨论;
    (4)由于题目含有字母而引起的讨论。分类讨论的解题步骤一般是:(1)确定讨论的对象以及被讨论对象的全体;(2)合理分类,统一标准,做到既无遗漏又无重复;(3)逐步讨论,分级进行;(4)归纳总结作出整个题目的结论。

  4. 等价转化思想 等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的形式,或利用互为逆否命题的等价关系来实现。常用的转化策略有:已知与未知的转化;正向与反向的转化;数与形的转化;一般于特殊的转化;复杂与简单的转化。

C. 学习高中数学应具备哪些数学思想

数形结合思想

数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一 些概念和运算的几何意义及常见曲线的代数特征.

应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数 列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.

以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.

以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.

分类讨论思想

分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决. 分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.

应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏. 如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分 类标准与分类方法,再逐项进行讨论,最后进行归纳小结.

常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类

等. 分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意 分类必须满足互斥、无漏、最简的原则.

函数与方程思想

函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应 用技巧多. 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.

运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:

(1)深刻理解函数 f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.

(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等 式是中学数学的重要内容,具有丰富的内涵和密切的联系. 掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.

转化与化归思想

化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想. 转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转 化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解 题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转 化则部分地改变了原对象的实质,需对所得结论进行必要的修正.

应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有: 正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化.

也有更详细的分法,比如:

数学思想

所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力能才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。

函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。

数形结合思想
“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。

分类讨论思想
当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要讨论a的取值情况。

方程思想
当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。

整体思想
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。

转化思想
在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。三角函数,几何变换,因式分解,解析几何,微积分,乃至古代数学的尺规作等数学理论无不渗透着转化的思想。常见的转化方式有:一般 特殊转化,等价转化,复杂 简单转化,数形转化,构造转化,联想转化,类比转化等。

隐含条件思想
没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。

类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

建模思想
为了描述一个实际现象更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

化归思想
化归思想就是化未知为已知,化繁为简,化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法,配方法,整体代人法以及化动为静,由抽象到具体等转化思想

归纳推理思想
由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理

另外,还有概率统计思想等数学思想,例如概率统计思想是指通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的综合分析等等。另外,还可以用概率方法解决一些面积问题。

D. 数学思维 求教!!!!!!!

数形结合思想

数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一 些概念和运算的几何意义及常见曲线的代数特征.

应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数 列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.

以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.

以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.

分类讨论思想

分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决. 分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.

应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏. 如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分 类标准与分类方法,再逐项进行讨论,最后进行归纳小结.

常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类

等. 分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意 分类必须满足互斥、无漏、最简的原则.

函数与方程思想

函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应 用技巧多. 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.

运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:

(1)深刻理解函数 f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.

(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等 式是中学数学的重要内容,具有丰富的内涵和密切的联系. 掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.

转化与化归思想

化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想. 转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转 化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解 题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转 化则部分地改变了原对象的实质,需对所得结论进行必要的修正.

应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有: 正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化.

也有更详细的分法,比如:

数学思想

所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力能才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。

函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。

数形结合思想
“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。

分类讨论思想
当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要讨论a的取值情况。

方程思想
当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。

整体思想
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。

转化思想
在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。三角函数,几何变换,因式分解,解析几何,微积分,乃至古代数学的尺规作等数学理论无不渗透着转化的思想。常见的转化方式有:一般 特殊转化,等价转化,复杂 简单转化,数形转化,构造转化,联想转化,类比转化等。

隐含条件思想
没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。

类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

建模思想
为了描述一个实际现象更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

化归思想
化归思想就是化未知为已知,化繁为简,化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法,配方法,整体代人法以及化动为静,由抽象到具体等转化思想

归纳推理思想
由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理

另外,还有概率统计思想等数学思想,例如概率统计思想是指通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的综合分析等等。另外,还可以用概率方法解决一些面积问题。

从71分到142分!我的高考数学经验谈(转)
起这个题目并不是为了炫耀自己学习能力有多强,自己的学习方法有多过人,而是作为今年高考的过来人,想对那些因为曾经没有学好数学而对数学从此失望甚至想到放弃的学弟学妹们打打气,还有1年的时间可以学习,一切皆有可能!
言归正传,本人和绝大多数文科生一样,自小对数学就很不“感冒”,到高二期末平时考试的分数还在两位数徘徊,最后一次期末考试还考过71分(150分制),当时名列班级倒数之列。本以为自己可以凭借文科的出色发挥获得不错的排名,可是由于数学实在低得离谱最终在学校的总分排名也早已在半数开外。
经历了这次打击,我痛定思痛在高三越发的重视起了数学。但凡事并非你努力了就一定会获得一个良好的结果,虽然我把教科书看了一遍又一遍,书上的习题做到看了题目基本就能背出最终的答案(一点都不夸张),可学期初的几次模拟考试中我并没有取得什么实质性进展,分数依旧在100分上下徘徊。
但是我并不甘于就如此放弃数学转而专攻别的科目,因为我知道现在越是低的分数代表越有潜力可挖,而相对文科则上升空间有限最多也就再提高10分,那还要耗费自己所有的精力(这里要提醒偏科的XDJM,自己的弱点才要狠抓啊)。接下来我做了一件对自己学好数学非常有积极意义的事,那就是——把自己错误的信息分类。
第一类问题———遗憾之错。就是分明会做,反而做错了的题;比如说,“审题之错”是由于审题出现失误,看错数字等造成的;“计算之错”是由于计算出现差错造成的;“抄写之错”是在草稿纸上做对了,往试卷上一抄就写错了、漏掉了;“表达之错”是自己答案正确但与题目要求的表达不一致,如角的单位混用等。
第二类问题———似非之错。理解的不够透彻,应用得不够自如;回答不严密、不完整;第一遍做对了,一改反而改错了,或第一遍做错了,后来又改对了;一道题做到一半做不下去了等等。
第三类问题———无为之错。由于不会,因而答错了或猜的,或者根本没有答。这是无思路、不理解,更谈不上应用的问题。
我分析了近期的几张试卷后发现,这几类错误的比例是2:7:1,得出这个结论事情就好办了,因为我知道一点做不出和因粗心做错的并不是太多,问题主要集中在我对概念理解的并不深刻,这是光靠背诵、练习所无法解决的,并且时间有限自己也不能在短期内完全依靠自己独立解决所以我又做了第二个影响我数学成败的重要决定,求助于家教,希望通过他们的经验来帮我弥补这个缺陷。
由于本人处在一个二级城市,虽然向往北京、上海等地名校的一流师资力量,可总不见得为了请个好点的家教特意去那里读书吧,这也让我确实苦恼了一阵。偶然一次机会,听同学说起他在网络上找到一个交通大学的家教,并且可以每个星期定期对他进行单独的家庭辅导。看着他短短一两个月,成绩明显有了提升,我也考虑是否也该仿效同学的做法在网上请一个家教?
回家和父母商量之后,他们开始明显不同意我的做法在他们的概念中网络就是用来娱乐的,做不了什么“正事”,在我再三摆出同学的例子说明网上更有机会接触一流的师资和承诺“只要自觉上网一样是用来学习的”,父母抱着姑且一试的心态让我在网上学习了一次。马上打电话向同学问来了网站的名称“天天—学习”,下载了客户端“天天学习通”就开始寻找老师了。
既然是远程教育,想必网站对老师的质量还是很有信心的(当时这个用这个平台找到的老师很多都是免费的,但是老师的质量我接触下来的几个都比我们这的老师水平高上很多)。浏览了几个页面之后看到一个北大数学系的数学老师评价不错,想必能考进北大这样的一流名校还是具备一定实力,而且从学生对他的评价更坚定我的信心(后来知道,这位老师当年是他们学校数学分数最高的到了148这样的“非人类”的分数)。
网络远程教育也并非大家想象的那样只播放老师的课堂录像,而是隔着网络能真正感受到老师对我有针对性的指导,除了看不见对方和面对面地教学几乎毫无区别,并且多媒体的引用让我对很多概念理解更深刻了。在了解了我的情况后,第一堂课老师就教于我:数学虽然比较难,但是只要你努力,相信还是可以学好的,首要的一点就是自己对自己要有信心,否则,走不出自己心理的束缚,很难有所成就。学习数学应该要在宏观上对其有一个整体的把握,总的来说,数学可以分为8大部分:函数、数列、立体几何、解析几何、排列组合、不等式、平面向量、二项式定理以及统计。其中,尤其以函数和几何较为难学,同时也是重点知识内容,要弄清楚它们各自的特点以及相互之间的联系,这些都是最基本的内容。而要做到这一点,首先就要对课本上的一些基本的概念、定理、公式了如指掌,用的时候才能从容不迫,信手拈来。

从71分到142分!我的高考数学经验谈(转)
起这个题目并不是为了炫耀自己学习能力有多强,自己的学习方法有多过人,而是作为今年高考的过来人,想对那些因为曾经没有学好数学而对数学从此失望甚至想到放弃的学弟学妹们打打气,还有1年的时间可以学习,一切皆有可能!
言归正传,本人和绝大多数文科生一样,自小对数学就很不“感冒”,到高二期末平时考试的分数还在两位数徘徊,最后一次期末考试还考过71分(150分制),当时名列班级倒数之列。本以为自己可以凭借文科的出色发挥获得不错的排名,可是由于数学实在低得离谱最终在学校的总分排名也早已在半数开外。
经历了这次打击,我痛定思痛在高三越发的重视起了数学。但凡事并非你努力了就一定会获得一个良好的结果,虽然我把教科书看了一遍又一遍,书上的习题做到看了题目基本就能背出最终的答案(一点都不夸张),可学期初的几次模拟考试中我并没有取得什么实质性进展,分数依旧在100分上下徘徊。
但是我并不甘于就如此放弃数学转而专攻别的科目,因为我知道现在越是低的分数代表越有潜力可挖,而相对文科则上升空间有限最多也就再提高10分,那还要耗费自己所有的精力(这里要提醒偏科的XDJM,自己的弱点才要狠抓啊)。接下来我做了一件对自己学好数学非常有积极意义的事,那就是——把自己错误的信息分类。
第一类问题———遗憾之错。就是分明会做,反而做错了的题;比如说,“审题之错”是由于审题出现失误,看错数字等造成的;“计算之错”是由于计算出现差错造成的;“抄写之错”是在草稿纸上做对了,往试卷上一抄就写错了、漏掉了;“表达之错”是自己答案正确但与题目要求的表达不一致,如角的单位混用等。
第二类问题———似非之错。理解的不够透彻,应用得不够自如;回答不严密、不完整;第一遍做对了,一改反而改错了,或第一遍做错了,后来又改对了;一道题做到一半做不下去了等等。
第三类问题———无为之错。由于不会,因而答错了或猜的,或者根本没有答。这是无思路、不理解,更谈不上应用的问题。
我分析了近期的几张试卷后发现,这几类错误的比例是2:7:1,得出这个结论事情就好办了,因为我知道一点做不出和因粗心做错的并不是太多,问题主要集中在我对概念理解的并不深刻,这是光靠背诵、练习所无法解决的,并且时间有限自己也不能在短期内完全依靠自己独立解决所以我又做了第二个影响我数学成败的重要决定,求助于家教,希望通过他们的经验来帮我弥补这个缺陷。
由于本人处在一个二级城市,虽然向往北京、上海等地名校的一流师资力量,可总不见得为了请个好点的家教特意去那里读书吧,这也让我确实苦恼了一阵。偶然一次机会,听同学说起他在网络上找到一个交通大学的家教,并且可以每个星期定期对他进行单独的家庭辅导。看着他短短一两个月,成绩明显有了提升,我也考虑是否也该仿效同学的做法在网上请一个家教?
回家和父母商量之后,他们开始明显不同意我的做法在他们的概念中网络就是用来娱乐的,做不了什么“正事”,在我再三摆出同学的例子说明网上更有机会接触一流的师资和承诺“只要自觉上网一样是用来学习的”,父母抱着姑且一试的心态让我在网上学习了一次。马上打电话向同学问来了网站的名称“天天—学习”,下载了客户端“天天学习通”就开始寻找老师了。
既然是远程教育,想必网站对老师的质量还是很有信心的(当时这个用这个平台找到的老师很多都是免费的,但是老师的质量我接触下来的几个都比我们这的老师水平高上很多)。浏览了几个页面之后看到一个北大数学系的数学老师评价不错,想必能考进北大这样的一流名校还是具备一定实力,而且从学生对他的评价更坚定我的信心(后来知道,这位老师当年是他们学校数学分数最高的到了148这样的“非人类”的分数)。
网络远程教育也并非大家想象的那样只播放老师的课堂录像,而是隔着网络能真正感受到老师对我有针对性的指导,除了看不见对方和面对面地教学几乎毫无区别,并且多媒体的引用让我对很多概念理解更深刻了。在了解了我的情况后,第一堂课老师就教于我:数学虽然比较难,但是只要你努力,相信还是可以学好的,首要的一点就是自己对自己要有信心,否则,走不出自己心理的束缚,很难有所成就。学习数学应该要在宏观上对其有一个整体的把握,总的来说,数学可以分为8大部分:函数、数列、立体几何、解析几何、排列组合、不等式、平面向量、二项式定理以及统计。其中,尤其以函数和几何较为难学,同时也是重点知识内容,要弄清楚它们各自的特点以及相互之间的联系,这些都是最基本的内容。而要做到这一点,首先就要对课本上的一些基本的概念、定理、公式了如指掌,用的时候才能从容不迫,信手拈来。

作者: 61.173.109.* 2006-8-30 12:05 回复此发言

--------------------------------------------------------------------------------

2 从71分到142分!我的高考数学经验谈
但是,这些知识也许是最容易被忽视的--大家都忙着做一道又一道的习题,买一本又一本厚厚的习题书,哪有时间去看课本?有些同学可能会想,数学又不是政治、历史,书上的习题又大都极简单,何必看课本呢?殊不知,课本对于数学来说,也是很重要的。高考数学有20%的基础题目,只要你花上一点点时间把课本好好看看,要拿下这些题易如反掌;反之,要是对一些基本的概念、定理都含混不清,不但基础题会失分,难题也不可能做得很好,毕竟这些都是基础啊。数学的逻辑性、分析性极强,可以说是一种纯理性的科学,要求你的思维一定要清晰明了,是不太可能出现做出题目却不知是如何做对的情况的,因而基础知识十分重要,尤其是对于数学不是特别好的同学来说。�
于是在老师的指导下,我把基础题目又进行了反复练习,把所谓80%的基础题目反复吃透,深刻理解以后基本也没有出过什么太大的闪失。就这么过了几个月,我发现自己的数学成绩已经稳步有升,到了高三下半学期初,基本已经稳定在了120分上下了。
由于题目做的多了,我也得出一个结论,好多题其实大同小异,所考查的知识点是一样的,只不过是换了一种形式。通过对上百份试卷的细致归纳总结,使我在接下来的数学综合考试中有一种"轻车熟路"的感觉,而且每次考试我都十分自信,也不再像以前考数学那样紧张慌乱了。我的数学成绩也由原来的120多分上到了140多分,有几次还是满分。
最终的高考成绩出来了142,算发挥的比较不错的,但也算在我的预料之中,有了数学的高分做保障再加上我原本不错的文科成绩,也如愿地考入南方一所知名的文科类院校开始了我的大学生活。在学习过程中我除了要感谢老师细心教导和“感谢自己”明智的选择了一流师资进而获得一流的成绩之外,也要勉励数学暂时没有学好的同学,千万不要放弃从最小的基本点开始抓起,努力做到抓住细节吃透细节,这样一来高考数学并不是想象中的那么难了

加油吧!!只要不放弃绝望就会变成希望。相信你能行!O(∩_∩)O O(∩_∩)O

E. 浅谈如何培养数学思维能力

孩子的数学思维训练可从以下四个方面展开

1、转化型

这是解决问题遇到障碍,受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。在教学中,通过该项训练,可以大幅度地提高学生解题能力。

2、系统型

这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。在高年级除结合综合应用题以外还可编制许多智力训练题来培养学生系统思维能力。

3、激化型

这是一种跳跃性、活泼性、转移性很强的思维形式。教师可通过速问速答来训练练学生。

4、类比型

这是一种对并列事物相似性的同实质进行识别的思维形式。这项训练可以培养学生思维的准确性。

F. 什么是数学思想帮帮忙!!

充分挖掘教学资源 激发学生学习兴趣

兴趣是学生最好的老师,是开启知识大门的金钥匙。小学生如果对数学有浓厚的兴趣,就会产生强烈的求知欲望,表现出对数学学习的一种特殊情感,学习起来乐此不疲,这就是所谓的“乐学之下无负担”。人教版《义务教育课程标准实验教科书·数学》符合儿童的年龄特征,关注学生的兴趣和经验,为学生的数学学习提供了生动活泼、主动求知的材料与环境,为使学生在获得数学基础知识和基本技能的同时,发展数学能力,培养创新意识和实践能力,建立学习和应用数学的兴趣和信心提供了条件,我们要充分利用这一教学资源,激发学生的学习兴趣。

一、创设学生熟悉的生活情境,在实际中解决数学问题

新教材增加了联系实际的内容,为学生了解现实生活中的数学,感受数学与日常生活的密切联系,增加对数学的亲近感,体验用数学的乐趣,提供了丰富的教学资源。例如,一年级上册教材第114~115页的实践活动“我们的校园”,根据教材我在教学中是这样处理的,选出六个学生都喜欢的活动,每个学生喜欢哪个活动就参加哪个,活动完毕,我马上提出问题:“哪个活动参加的人数最多,哪个活动参加的人数最少?活动人数最多的组比活动人数最少的组多多少人?”立刻,学生的注意力由玩转移到了思考问题上。教室里开始互相争执,各执一词,互不相让。接着我又问:“能不能想出一个好主意,能清楚、明了地看出结果?”这时候,我就开始引导学生如何进行统计,在不知不觉中,让学生经历了数据的收集、整理过程。学生不仅学习了收集和整理数据的简单方法,而且初步感受到了用统计方法解决问题的过程,为形成统计观念打下了基础。

又如,一年级下学期的“位置”这一节课也是创设学生熟悉的生活情境。在教室里排座位,给每个学生发一张票按号就坐,学生在寻找座位时就会思考、观察、理解第几组第几个,坐好座位后会很好奇地看看前后左右都是谁。所以这一节课学生们的兴趣也很浓厚。第7页“布置房间”这一题我根据素材,把这幅图设计成活动画面内容,学生可以按自己的想法随意摆放,然后告诉大家,自己怎样布置的房间,在这里既使学生明确了方位,又体会了解决实际问题的乐趣。

二、在富有儿童情趣的童话中,感受数学的美

“故事是儿童的第一大需要。”生动的数学故事令人终生难忘,故事中有生动的情节,丰富的情感,寓知识于故事之中,不仅吸引学生,也符合学生形象记忆的特点。打开实验教材,可以看到许多有趣美丽的童话内容,如一年级上册的第6、7页小兔盖房子,第14、15页野生动物园,一年级下册第20页热闹的小河边,第41页小熊的一家,这些都是儿童喜欢、熟悉的情境,而在这里也包含了许多奇妙的数学知识,需要探索才能完全理解,这就容易激发儿童主动探究的欲望。

在欣赏这些有趣、美丽的画面的同时,我鼓励学生去创作画,从画中感受到数学的无处不在。一年级下学期讲过“找规律”这一单元后,我给学生留了一个画画的任务,要求发挥自己的想象力画出一幅画,要体现出有规律的美,并且取一个好听的名字。第二天,我发现学生的能力真的是不可低估,《金色的秋天》中向日葵在阳光下有规律地昂首而立,《丰收的果园》中一棵棵苹果树、梨树像哨兵似的排列着,河里的小鱼俏皮地吐着水泡也是那么的有规律……这些都证明孩子已经有了欣赏数学美的意识,已经对数学产生了浓厚的兴趣。

三、以猜为动力,引导学生探索数学的奥秘

众所周知,每一个孩子都爱问为什么,每一个孩子都想探究一些秘密,根据孩子的这种心理,教材编排了一些数学游戏:如一年级上册第13页的“比长短”,第19页的“猜数”,一年级下册第44页的“估一估,猜一猜”,等等。

一年级上册第13页的“比长短”,通过猜铅笔的长短,使学生明白在比长短时,要注意各种不同的情况。教学第19页的“猜数”时,我先告诉学生我一共有几个玻璃球,左手有几个,让学生猜猜右手有几个,这样反复进行几次,学生就在“猜”中掌握了数的分解和组成以及加、减法,加深了对数的认识,为今后学习用数学做好了铺垫。

在教材的启发下,我多次创设这样的情境,让学生在好奇中思考,在思考中得到逐步的提高。如教学“猜数”,我先在卡片上写上45,然后告诉大家:“我写的数个位上是6前面的数,十位上的数比个位上的数少1,猜猜我写的数是几?”这样的游戏丰富多彩,使学生获得了愉悦的数学学习体验。

四、在动手动脑中体验数学的乐趣

利用数学学具进行操作实验,让学生动手动脑,看一看,摆一摆,想一想等,感知学习内容,动中促思,玩中长知,乐中成材,使学习内容在有趣的实验中牢牢记住。一年级下册第27页“图形的拼组”中就有一个做风车的手工活动。活动开始时,先拿出一张长方形纸和一张正方形纸,让学生沿所标虚线折一折,或自己通过活动体会长方形、正方形边的特征,从而了解到:长方形的对边相等,正方形的四条边都相等。在此基础上,让学生用一张长方形纸做出一个风车。在这个过程中,学生既体会了平面图形的特征又看到了它们之间的关系。把长方形纸折成正方形纸利用了正方形四边相等的特征,把正方形纸剪成四个三角形时,又看到了三角形和正方形的关系。转动风车时,又惊奇地发现风车所转动的路径是一个圆。

在平面图形和立体圆形拼组中,学生在各种操作、探索活动中,观察,感知,猜测,感受空间方位的含义及其相对性,激发学生探索数学的兴趣,发展了学生的创新意识。

五、在比赛中增长信心,培养竞争意识

儿童的好胜心、自尊心强,爱表现自己,课本就有意引进竞争意识,激发学生学习兴趣,例如,一年级上册中第13页“谁摸得高,谁摆得高”,第113页“用相同的时间,看谁算得又对又快”,一年级下册中第26页“夺红旗”等游戏都适合小学生争强好胜的心理特征。当然,教师在组织比赛时,要给学生充分表现自我的机会,让他们在心理上得到满足,不断鼓励他们树立信心,增强勇气,做到胜不骄,败不馁,认真总结经验教训。如果比赛完就了事,那么长才干的只是少数学生,大多数学生仍得不到提高,易产生自卑感。

我们也可以利用学具来帮助学习。学具袋中的小卡片、小棒棒等都可以在学知识的同时为我们的课堂增添趣味。在一年级下册配套的学具袋中有一副扑克牌。为了发挥这副扑克牌的最大作用,让这副扑克牌成为学生的好朋友,我主要采用四人小组合作形式,两人比赛,一人做裁判,一人记录。比赛的学生每人抽两张或三张牌做加、减法或连加、连减,看看谁的数据大。学完“100以内的数的认识”后做抽牌比大小游戏,我们常常活动一节课,课中,学生不知道做了多少口算题,练了多少比大小,这比让他们单纯做题有趣也有效得多。

总之,新教材为我们提供了相当丰富的教学资源,只要教师把真诚的爱献给学生,把全部精力和热情倾注在课堂教学中,有效利用教学资源,合理安排课堂教学,一定能使学生对数学产生浓厚的兴趣。“把学习的乐趣还给天真活泼的学生”,这是我们课程改革的信念,也是我们教师所要追寻的目标。

数学这门基础学科,自小学、初中、高中直至大学伴随着每个学生的成长,学生对它投入了大量的时间与精力,然而每个人并不一定都是成功者。考上高中的学生应该说基础是好的,然而进入高中后,由于对知识的难度、广度、深度的要求更高,有一部分学生不适应这样的变化,由于学习能力的差异而出现了成绩分化,有一部分学生由众多初中学习的成功者沦为高中学习的失败者,多次阶段性评估考试不及格,有的难以提高,直至在高考中再次体现出来,甚至有的家长会不断提出这样的困惑:" 我的××以前初中怎么好,现在怎么了?"
尤其对高一学生来讲,环境可以说是全新的,新教材、新同学、新教师、新集体……学生有一个由陌生到熟悉的适应过程。另外,经过紧张的中考复习,考取了自己理想的高中,必有些学生产生"松口气"想法,入学后无紧迫感。也有些学生有畏惧心理,他们在入学前,就耳闻高中数学很难学,高中数学课一开始也确是些难理解的抽象概念,如映射、集合、异面直线等,使他们从开始就处于怵头无趣的被动局面。以上这些因素都严重影响高一新生的学习质量。那么怎样才能学好高中数学呢?
一、认清学习能力状态
1 、心理素质。由于学生在初中特定环境下所具有的荣誉感与成功感能否带到高中学习,这就要看他(或她)是否具备面对挫折、冷静分析问题、找出克服困难走出困境的办法。会学习的学生因学习得法而成绩好,成绩好又可以激发兴趣,增强信心,更加想学,知识与能力进一步发展形成了良性循环,不会学习的学生开始学习不得法而成绩不好,如能及时总结教训,改变学法,变不会学习为会学习,经过一番努力还是可以赶上去的,如果任其发展,不思改进,不作努力,缺乏毅力与信心,成绩就会越来越差,能力越得不到发展,形成恶性循环。因此高中学习是对学生心理素质的考验。
2 、学习方式、习惯的反思与认识
(1 )学习的主动性。许多同学进入高中后还象初中那样有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动性,表现在不订计划,坐等上课,课前不作预习,对老师要上课的内容不了解,上课忙于记笔记,忽略了真正听课的任务,顾此失彼,被动学习。
(2 )学习的条理性。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵外延,分析重点难点,突出思想方法,而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是忙于赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
(3 )忽视基础。有些" 自我感觉良好" 的学生,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的" 水平" ,好高骛远,重" 量" 轻" 质" ,陷入题海,到正规作业或考试中不是演算出错就是中途" 卡壳" 。
(4 )学生在练习、作业上的不良习惯。主要有对答案、不相信自己的结论,缺乏对问题解决的信心和决心;讨论问题不独立思考,养成一种依赖心理素质;慢腾腾作业,不讲速度,训练不出思维的敏捷性;心思不集中,作业、练习效率不高。
3 、知识的衔接能力。
初中数学教材内容通俗具体,多为常量,题型少而简单;而高中数学内容抽象,多研究变量、字母,不仅注重计算,而且还注重理论分析,这与初中相比增加了难度。
另一方面,高中数学与初中相比,知识的深度、广度和能力的要求都是一次质的飞跃,这就要求学生必须掌握基础知识与技能为进一步学习作好准备。由于初中教材知识起点低,对学生能力的要求亦低,由于近几年教材内容的调整,虽然初高中教材都降低了难度,但相比之下,初中降低的幅度大,有的内容为应付中考而不讲或讲得较浅(如二次函数及其应用),这部分内容不列入高中教材但需要经常提到或应用它来解决其它数学问题,而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中教材内容的难度差距,反而加大了。如不采取补救措施,查缺补漏,学生的成绩的分化是不可避免的。这涉及到初高中知识、能力的衔接问题。
二、努力提高自己的能力
1 、 改进学法、培养良好的学习习惯。
不同学习能力的学生有不同的学法,应尽量学习比较成功的同学的学习方法。改进学法是一个长期性的系统积累过程,一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。" 不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。" 自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。
在课堂教学中培养听课习惯。听是主要的,听能使注意力集中,把老师讲的关键性部分听懂、听会,听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地笔记,领会课上老师的主要精神与意图,五官能协调活动是最好的习惯。在课堂、课外练习中培养作业习惯,在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力,必须独立完成。可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的,抓数学学习习惯必须从高一年级抓起,无论从年龄增长的心理特征上讲,还是从学习的不同阶段的要求上讲都应该进行学习习惯的指导。
2 、加强4 5 分钟课堂效益。
要提高数学能力,当然是通过课堂来提高,要充分利用好这块阵地。
(1 ) 抓教材处理。学习数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。
(2 ) 抓知识形成。数学的一个概念、定义、公式、法则、定理等都是数学的基础知识,这些知识的形成过程容易被忽视。事实上,这些知识的形成过程正是数学能力的培养过程。一个定理的证明,往往是新知识的发现过程,在掌握知识的过程中,就培养了数学能力的发展。因此,要改变重结论轻过程的教学方法,要把知识形成过程看作是数学能力培养的过程。
(3 ) 抓学习节奏。数学课没有一定的速度是无效学习,慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。
(4 ) 抓问题暴露。在数学课堂中,老师一般少不了提问与板演,有时还伴随 着问题讨论,因此可以听到许多的信息,这些问题是现开销的,对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,现开销的问题及时抓,遗留问题有针对性地补,注重实效。
(5 )抓课堂练习、抓好练习课、复习课、测试分析课的教学。数学课的课堂练习时间每节课大约占1 / 4 - 1 / 3 ,有时超过1 / 3 ,这是对数学知识记忆、理解、掌握的重要手段,坚持不懈,这既是一种速度训练,又是能力的检测。学生做题是无心的,而教师所寻找的例题是有心的,哪些知识需要补救、巩固、提高,哪些知识、能力需要培养、加强应用。上课应有针对性。
(6 )抓解题指导。要合理选择简捷运算途径,这不仅是迅速运算的需要,也是运算准确性的需要,运算的步骤越多,繁度就越大,出错的可能性就会增大。因而根据问题的条件和要求合理地选择简捷的运算途径不但是提高运算能力的关键,也是提高其它数学能力的有效途径。
(7 )抓数学思维方法的训练。数学学科担负着培养运算能力、逻辑思维能力、空间想象力以及运用所学知识分析问题、解决问题的重任,它的特点是具有高度的抽象性、逻辑性与广泛的适用性,对能力的要求较高。数学能力只有在数学思想方法不断地运用中才能培养和提高。
3、体验成功,发展学习兴趣
"兴趣是最好的老师",而学习兴趣总是和成功的喜悦紧密相连的。如听懂一节课,掌握一种数学方法,解出一道数学难题,测验得到好成绩,平时老师对自己的鼓励与赞赏等,都能使自己从这些"成功"中体验到成功的喜悦,激发起更高的学习热情。因此,在平时学习中,要多体会、多总结,不断从成功(那怕是微不足道的成绩)中获得愉悦,从而激发学习的热情,提高学习的兴趣。
三、 几点注意。
1、提高学生数学能力的过程是循序渐进的过程,要防止急躁心理,有的同学贪多求快,囫囵吞枣,有的同学想靠几天冲刺一蹴而就,有的取得一点成绩沾沾自喜,遇到挫折又一蹶不振,针对这些实际问题要有针对性的教学。
2、知识的积累、能力的培养是长期的过程,正如华罗庚先生倡导的" 由薄到厚" 和" 由厚到薄" 的学习过程就是这个道理。同时近几年高考试题中应用性问题的出现,更对学生把所学数学知识应用到实际生活中解决问题能力提出了更为严峻的挑战,应加强对应用数学意识和创造思维方法与能力的培养与训练

G. 什么是数学基本思想

数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。

H. 高中数学解题时都涉及到那些数学思想

一、高中数学重要数学思想
一、 函数方程思想
函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。
1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;
2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;
3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。
二、 数形结合思想
数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。
1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。
2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”。这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一。因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂。
3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质。
4.华罗庚先生曾指出:“数缺性时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.
5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题)。而以形为手段的数形结合在高考客观题中体现。
6.我们要抓住以下几点数形结合的解题要领:
(1) 对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可;
(2) 对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用;
(3) 对于以下类型的问题需要注意: 可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点 及余弦定理进行转化达到解题目的。
三、 分类讨论的数学思想
分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。
1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种:
(1)涉及的数学概念是分类讨论的;
(2)运用的数学定理、公式、或运算性质、法则是分类给出的;
(3)求解的数学问题的结论有多种情况或多种可能性;
(4)数学问题中含有参变量,这些参变量的不同取值导致不同的结果的;
(5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决的。
2.分类讨论是一种逻辑方法,在中学数学中有极广泛的应用。根据不同标准可以有不同的分类方法,但分类必须从同一标准出发,做到不重复,不遗漏 ,包含各种情况,同时要有利于问题研究。
四、 化归与转化思想
所谓化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。一般总是将复杂的问题通过变化转化为简单的问题,将难解问题通过变换转化为容易求解的问题,将未解决的问题转化为已解决的问题。
立体几何中常用的转化手段有
1.通过辅助平面转化为平面问题,把已知元素和未知元素聚集在一个平面内,实现点线、线线、线面、面面位置关系的转化;
2.平移和射影,通过平移或射影达到将立体几何问题转化为平面问题,化未知为已知的目的;
3.等积与割补;
4.类比和联想;
5.曲与直的转化;
6.体积比,面积比,长度比的转化;
7.解析几何本身的创建过程就是“数”与“形”之间互相转化的过程。解析几何把数学的主要研究对象数量关系与几何图形联系起来,把代数与几何融合为一体。
二、中学数学常用解题方法
1. 配方法
配方法是指将一代数形式变形成一个或几个代数式平方的形式.高考中常见的基本配方形式有:
(1)a^2+b^2= (a + b)^2- 2ab = (a -b)^2+ 2ab;
(2)a^2+ b^2+c^2= (a+b + c)2- 2 ab – 2 a c – 2 bc;
(3)a^2+ b^2+ c^2-ab–bc–a c = [(a-b)^2+ (b-c)^2+(a-c)^2];
(配方法主要适用于与二次项有关的函数、方程、等式、不等式的讨论,求解与证明及二次曲线的讨论。
2.待定系数法
一 待定系数法是把具有某种确定性时的数学问题,通过引入一些待定的系数,转化为方程组来解决。待定系数法的主要理论依据是:
(1)多项式f(x)=g(x)的充要条件是:对于任意一个值a,都有f(a)=g(a);
(2)多项式f(x) ≡g(x)的充要条件是:两个多项式各同类项的系数对应相等;
二 运用待定系数法的步骤是:
(1)确定所给问题含待定系数的解析式(或曲线方程等);
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决;
三 待定系数法主要适用于:求函数的解析式,求曲线的方程,因式分解等。
3.换元法
换元法是指引入一个或几个新的变量代替原来的某些变量(或代数式),对新的变量求出结果之后,返回去求原变量的结果。换元法通过引入新的元素将分散的条件联系起来,或者把隐含的条件显示出来,或者把条件与结论联系起来,或者变为熟悉的问题。其理论根据是等量代换。高中数学中换元法主要有以下两类:
(1)整体换元:以“元”换“式”; (2)三角换元 ,以“式”换“元”;
(3)此外,还有对称换元、均值换元、万能换元等;换元法应用比较广泛。如解方程,解不等式,证明不等式,求函数的值域,求数列的通项与和等,另外在解析几何中也有广泛的应用。运用换元法解题时要注意新元的约束条件和整体置换的策略。
4.向量法
向量法是运用向量知识解决问题的一种方法,解题常用下列知识:
(1)向量的几何表示,两个向量共线的充要条件;(2)平面向量基本定理及其理论;
(3)利用向量的数量积处理有关长度、角度和垂直的问题;
(4)两点间距离公式、线段的定比分点公式、平移公式;
5.分析法、综合法
(1)分析法是从所求证的结果出发,逐步推出能使它成立的条件,直至已知的事实为止;分析法是一种“执果索因”的直接证法。
(2)综合法是从已经证明的结论、公式出发,逐步推出所要求证的结论。综合法是一种“由因导果”,叙述流畅的直接证法。
(3)分析法、 综合法是证明数学问题的两大最基本的方法。分析法“执果索因”的分析方法,思路清晰,容易找到解题路子,但书写格式要求较高,不容易叙述清楚,所以分析法、综合法常常交替使用。分析法、 综合法应用很广,几乎所有题都可以用这两个方法来解。
6.反证法
反证法是数学证明的一种重要方法,因为命题p与它的否定非p的真假相反,所以要证一个命题为真,只要证它的否定为假即可。这种从证明矛盾命题(即命题的否定)为假进而证明命题为真的证明方法叫做反证法。
一 反证法证明的一般步骤是:
(1)反设:假设命题的结论不成立,即假设结论的反面成立;
(2)归谬:从命题的条件和所作的结论出发,经过正确的推理论证,得出矛盾的结果;
(3)结论:有矛盾判定假设不正确,从而肯定的结论正确;
二 反证法的适用范围:(1)已知条件很少或由已知条件能推得的结论很少时的命题;
(2)结论的反面是比原结论更具体、更简单的命题,特别是结论是否定形式(“不是”、“不可能”、“不可得”)等的命题;(3)涉及各种无限结论的命题;(4)以“最多(少)、若干个”为结论的命题;(5)存在性命题;(6)唯一性命题;(7)某些定理的逆定理;
(8)一般关系不明确或难于直接证明的不等式等。
三 反证法的逻辑依据是“矛盾律”和“排中律”。
7.另外:还有数学归纳法、同一法、整体代换法等.

I. 数学规律问题是从简单情形入手的从中发现规律归纳结论体现了什么数学思想

体现了数学归纳法的数学思想。

对公式、定理、法则的学习往往都是从特殊开始,通过总结归纳得出来的,经过证明后,成为一般性结论,又使用它们来解决相关的数学问题。在数学中经常使用的归纳法、演绎法就是特殊与一般思想的集中体现。

最简单和常见的数学归纳法是证明当n等于任意一个自然数时某命题成立。证明分下面两步:

1、证明当n= 1时命题成立。

2、假设n=m时命题成立,那么可以推导出在n=m+1时命题也成立。(m代表任意自然数)

(9)漏刻体现什么数学思想扩展阅读:

数学归纳法对解题的形式要求严格,数学归纳法解题过程中,

第一步:验证n取第一个自然数时成立

第二步:假设n=k时成立,然后以验证的条件和假设的条件作为论证的依据进行推导,在接下来的推导过程中不能直接将n=k+1代入假设的原式中去。

最后一步总结表述。

需要强调是数学归纳法的两步都很重要,缺一不可,否则可能得到下面的荒谬证明。

J. 四大数学思想是什么

1、数形结合思想
数形结合思想,其“数”与“形”结合,相互渗透,把代数式的精确刻画与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一 些概念和运算的几何意义及常见曲线的代数特征.

应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图像;(3)数列通项及求和公式的函数特征及函数图像;(4)方程(多指二元方程)及方程的曲线。
以形助数常用的有:借助数轴;借助函数图像;借助单位圆;借助数式的结构特征;借助于解析几何方法. 以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.

2、分类讨论思想

分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决. 分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综 合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的 标准,分层别类不重复、不遗漏的分析讨论”.

应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏. 如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分 类标准与分类方法,再逐项进行讨论,最后进行归纳小结.

常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等. 分类讨论思想方法依据一定的标准,对问题分类、求解,要特别注意 分类必须满足互斥、无漏、最简的原则.

3、函数与方程思想

函数与方程思想是最重要的一种数学思想,综合知识多、题型多、应 用技巧多. 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图像与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. 运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数 f(x)的性质(单调性、奇偶性、周期性、最值和图像变换),熟练掌握基本初等函数的 性质,这是应用函数思想解题的基础.(2)掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化。
4、转化与化归思想

化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图像、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想.

转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解 题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转 化则部分地改变了原对象的实质,需对所得结论进行必要的修正. 应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化.

常见的转化有: 正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化.

阅读全文

与漏刻体现什么数学思想相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:747
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1364
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1423
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1037
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1008
武大的分析化学怎么样 浏览:1256
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1669
下列哪个水飞蓟素化学结构 浏览:1431
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1072