导航:首页 > 数字科学 > 七年级上册数学提纲怎么写

七年级上册数学提纲怎么写

发布时间:2022-05-26 10:57:14

㈠ 数学初一上册复习提纲(华东师范大学出版社) 简洁点,就说概念,1-2句话概括

第一章
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。

㈡ 初一数学上册各章知识点框架结构

注意:这是北师大版的数学书 人教版和这也差不多

七年级上数学复习提纲
第一章 丰富的图形世界
1、 认识生活中常见的几何体特点:圆柱、圆锥、正方体、长方体、棱柱、球
2、 知道常见几何体的分类,一共分为三类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥)
3、 平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。
4、 圆柱的侧面展开图是一个长方形;展开图是两个圆形和一个长方形;
圆锥的展开图是一个扇形和一个圆形;
正方体展开图是一个六个小正方形组成的图形;
长方体的展开图是与正方体的类似。(容易考到)
5、 特殊立体图形的截面图形:
(1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、六边形。
(2)圆柱的截面是:长方形、圆、椭圆。
(3)圆锥的截面是:三角形、圆、椭圆。
(4)球的截面是:圆
6、我们经常把从前面看到的图形叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。
7、点动成线,线动成面,面动成体。

第二章 有理数
1 、正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数。
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。
2 、有理数
(1) 正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。0既不是正数,也不是负数。
(2) 通常用一条直线上的点表示数,这条直线叫数轴。
数轴三要素:原点、方向箭头、单位长度。
在直线上任取一个点表示数0,这个点叫做原点。
(3) 只有符号不同的两个数叫做互为相反数。
特别的:0的相反数是0
(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身
一个负数的绝对值是它的相反数;
0的绝对值是0;
两个负数,绝对值大的反而小。
3 、有理数的加减法
(1)有理数加法法则:
①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,取绝对值较大的数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加和为0。
③一个数同0相加,仍得这个数。
(2) 有理数减法法则:减去一个数,等于加这个数的相反数。
4、 有理数的乘除法
(1) 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
(2) 乘积是1的两个数互为倒数。
(3) 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
(4) 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0

第三章、字母表示数
1、用运算符号把数和表示数的字母连接而成的字母叫做代数式。
2、求代数式值要注意:字母的取值必须确保代数式有意义;字母的取值要确保它本身所表示的数量有意义。
3、代数式的系数应包括这一项前的符号;如果代数式的某一项只含有字母因数,它的系数就是1或-1,而不是0。
4、同类项所含的字母相同;相同字母的指数也相同。
注意:同类项与系数无关,与字母的排列顺序无关;几个常数项也是同类项。
5、合并同类项法则:在合并同类项时,把同类项的系数相加,字母和其指数不变。

第四章 平面图形及位置关系
1、直线、射线、线段
(1) 直线、射线、线段的区别:直线没有端点;射线一个端点;线段有两个端点。
(2) 线段公理:两点之间,线段最短。
(3)线段的比较方法:叠和法和度量法。
2、角的度量与表示
角的三种表示方法:用三个大写英文字母表示或用一个大写英文字母表示(如:<ABC,<A);用希腊字母表示(如<β);用数字表示(如<1,<2)
3、 角的比较与运算
(1)角按大小分可分为锐角、直角、钝角、平角、周角。
(2)角平分线把一个角分成两个相等的角,角平分线是一条射线。
4、平行线
(1)如何画平行线?
(2)平行线的性质1:过直线外一点只有一条直线与已知直线平行;
平行线的性质2:两条直线都与第三条直线平行,那么这两条直线也平行。
5、垂直
(1) 如何画垂线?
(2) 垂线的性质1:过一点只有一条直线与已知直线垂直。
垂线的性质2:直线外一点与直线上任意一点的连线中,垂线段最短。
垂直的性质3:是点到直线的距离。

第五章 一元一次方程
1、 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数x,未知数x的指数都是1次,这样的方程叫做一元一次方程。
就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2、等式的性质:
(1). 等式两边加(或减)同一个数(或式子),结果仍相等。
(2) 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3、把等式一边的某项变号后移到另一边,叫做移项。(要移就得变)
4、常用体积公式:
长方形的体积=长X宽X 高 ;
正方形的体积=边长X边长X边长 ;
圆柱的体积=底面积X高 ;
圆锥的体积=底面积X高X1/3。

第六章生活中的数据
1、把一个大于10的数表示成1X10∩的形式(其中1≤a<10,n为正整数),就叫科学计数法。
(从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。)
2、扇形统计图的性质:各扇形占整个圆的百分比之和为1。
3、制作扇形统计图的步骤是什么?
4、各统计图的特点:
(1)扇形统计图能清楚地表示出部分与总体的关系;
(2)折线统计图能清楚地反映数据的趋势;
(3)条形统计图能清楚地表现出数据的多少

第七章 可能性
必然事件:事先能肯定它
确定事件{不可能事件:事先能肯定它一定
事件{不确定事件:事先无法肯定它
1、事情发生的可能性的大小:
机会大的不确定事件不一定发生,机会小的不确定事件也不一定不发生,机会大大小只能说明发生的程度不同。
2、要学会判断事情发生的可能性的大小。

㈢ 七年级上册语文数学英语政治地理生物历史复习提纲

七年级地理上册复习提纲
1、地图上的三要素包括:方向、比例尺、图例。
2、在地图上确定方向:有指向标的地图,指向标箭头指向北方;据经纬网判断方向,经线指示南北方向,纬线指示东西方向;没有指向标的地图,通常采用“上北下南左西右东”来确定方向。
3、比例尺就是图上距离与实际距离之比,一般来说,所画范围大,内容简略,选用比例尺小,反之,所画范围小,内容详细,选用比例尺大。比例尺是个分数式,分母越大比例尺就越小。
4、地球是一个两极略扁赤道略鼓的不规则球体。0°纬线又叫赤道,赤道就是0°纬线,赤道周长约为4万千米,是地球上最长的纬线。纬度向北向南各有90°,分别用N和S表示。0°经线又叫本初子午线,向东向西各有180°,分别用E和W表示。地球的平均半径为6371千米。
5、以赤道为界把地球分为南、北半球;以20°W和160°E为界把地球分为东、西半球。
6、纬度范围:0° 30°NS为低纬度;30° 60°NS为中纬度;60° 90°NS为高纬度。
7、比较经线和纬线的特点:
名称 形 状 长 度 指示方向
经线 半圆(弧形) 相等 南北方向
纬线 都是圆(极点除外)有长有短 东西方向
8、地球表面,陆地面积占29%,海洋面积占71%,所以有形象地称地球为“三分的陆地,七分的海洋”。
9、七大洲的名称按面积依次为:亚洲、非洲、北美洲、南美洲、南极洲、欧洲、大洋洲。(注意看P23图2-19和图2-20)
亚洲和欧洲连成一块合称亚欧大陆,中国位于亚洲上。
南极洲是世界上跨经度最多的大洲;亚洲是面积最大的大洲。
10、四大洋分别是:太平洋、大西洋、印度洋、北冰洋。
太平洋是世界上面积最大的海洋;大西洋呈“S”形;北冰洋是世界上跨经度最多的大洋。
11、亚洲和欧洲的分界线是:乌拉尔山脉、乌拉尔河、里海、大高加索山脉、黑海和土耳其海峡(沟通黑海和地中海)。(乌乌里大黑土)
亚洲和非洲的分界线是:苏伊士运河(沟通地中海和红海)。
南美洲和北美洲的分界线:巴拿马运河(沟通太平洋和大西洋)。
12、地表各种高低起伏的形态,总称为地形。通常分为平原、高原、山地、丘陵和盆地五种基本类型。
13、五种基本地形的特点:
平原:海拔较低(通常<200m),地面平坦;
高原:海拔较高,边缘陡峭,内部起伏不大;
山地:海拔较高(>500m),坡度陡峭,起伏很大;
丘陵:海拔较低,地面起伏不大;
盆地:四周高,中间低。

14、地形图上用海拔来表示地面的高低起伏。绿色表示平原、蓝色表示海洋、黄色表示高山高原、白色表示冰川。
15、 板块构造学说认为:地球岩石圈由六大板块组成即亚欧板块、美洲板块、非洲板块、太平洋板块、印度洋板块和南极洲板块。其中太平洋板块几乎全部是海洋。
16、一般来说,板块内部比较稳定,板块与板块交界处有张裂拉伸、有碰撞挤压、地壳比较活跃,最容易发生火山和地震。
17、世界上的地震和火山主要集中分布在环太平洋火山地震带和地中海-喜马拉雅山火山地震带上。印度尼西亚处于亚欧板块、太平洋版块和印度洋板块交界处,是世界上火山地震最多的地区。
18、到2006年3月,世界人口总数已达65亿。人口的自然增长主要由出生率和死亡率决定的(人口的自然增长率=出生率-死亡率)
19、一般来说,经济发展水平高的国家,人口的自然增长较慢;经济发展水平低国家,人口的自然增长较快。人口的自然增长率最高:非洲。人口的自然增长率最低:欧洲。
20、世界人口最稠密地区主要分布在亚洲东部和南部、欧洲西部、北美洲和南美洲的东部。原因是这些地区处在中低纬度的近海平原地区。
21、人口增长过快、过慢都会带来严重的问题:
人口增长过快带来了就业、居住、教育、医疗等难以解决等问题;
人口增长过慢造成了劳动力短缺、人口老龄化等问题。
22、人口的增长应与资源、环境相协调,与社会经济发展相适应。
23、城市问题主要表现在:交通拥挤、住房紧张、工业污染、噪声干扰、供水不足、犯罪率上升等。
24、世界三大人种分别是:黄色人种、白色人种、黑色人种。
黄色人种分布在:亚洲东部、北美洲北部和南美洲西部。
白色人种分布在:欧洲、亚洲西部、非洲北部、北美洲中部、大洋洲。
黑色人种分布在:非洲的中部和南部、大洋洲。(三大人种的具体分布到P72图4.11识记)
25、目前被联合国确定为工作语言的是:汉语、英语、法语、俄语、西班牙语、阿拉伯语。其中使用范围最广的是英语;使用人数最多的是汉语。
26、世界的三大宗教:
宗教 产生地区 分布地区 主要语言 主要人种
基督教 亚洲西部 欧洲、美洲、大洋洲、西亚和东南亚 英语 白种人
伊斯兰教 阿拉伯半岛 非洲北部和东部 阿拉伯语 白种人
佛教 古印度 亚洲东部和东南部 汉语 黄种人

27、聚落的主要形式包括:城市和乡村。
28、天气和气候概念和区别:
概念 特点
天气 某个地方短时间内发生的阴、晴、冷热等变化 多变、不稳定
气候 某个地方多年的天气平均状况。 相对稳定
29、气候的两个要素:气温和降水。
30、在北半球,陆地最热月出现在7月,最冷月出现在1月。海洋最热月出现在8月,最冷月出现在2月
一天当中最高气温出现在午后2点(14时),最低气温出现在日出前后。
31、世界气温分布的规律:由低纬度(赤道)地区向高纬度(两极)地区逐渐降低。
降水的主要类型有:对流雨、地形雨、锋面雨。
海拔每升高100米气温下降0.6℃。
33、世界降水的分布规律:
赤道附近降水多,两极地区降水少;
温带地区沿海降水多,内陆降水少;
南北回归线附近的大陆西岸降水少,东岸降水多。
34、影响气候的主要因素有:地球的形状、地球的运动、海陆分布、地形地势、人类活动、纬度位置、洋流因素。

㈣ 七年级上册数学期中复习资料

第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。

第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。

㈤ 北师大版七年级数学上册知识点

北师大版初一数学定理知识点汇总[七年级上册]
第一章 丰富的图形世界

¤1.

¤2.

¤3. 球体:由球面围成的(球面是曲面)
¤4. 几何图形是由点、线、面构成的。
①几何体与外界的接触面或我们能看到的外表就是几何体的表面。几何的表面有平面和曲面;
②面与面相交得到线;
③线与线相交得到点。
※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱。
※6. 侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。
¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。
¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……
¤9. 长方体和正方体都是四棱柱。
¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。
※12. 设一个多边形的边数为n(n≥3,且n为整数),从一个顶点出发的对角线有(n-3)条;可以把n边形成(n-2)个三角形;这个n边形共有 条对角线。
◎13. 圆上两点之间的部分叫做弧,弧是一条曲线。
◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。
¤15. 凸多边形和凹多边形都属于多边形。有弧或不封闭图形都不是多边形。

第二章 有理数及其运算



※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
※任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)
※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)
※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
¤数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。
※绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。
※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
0
-1
-2
-3
1
2
3
越来越大

※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;
互为相反数的两数(除0外)的绝对值相等;
任何数的绝对值总是非负数,即|a|≥0
※比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:
①先求出两个数负数的绝对值;
②比较两个绝对值的大小;
③根据“两个负数,绝对值大的反而小”做出正确的判断。
※绝对值的性质:
①对任何有理数a,都有|a|≥0
②若|a|=0,则|a|=0,反之亦然
③若|a|=b,则a=±b
④对任何有理数a,都有|a|=|-a|
※有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0相加,仍得这个数。
※加法的交换律、结合律在有理数运算中同样适用。
¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;
②符号相同的数,可以先相加;
③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加。
※有理数减法法则: 减去一个数,等于加上这个数的相反数。
¤有理数减法运算时注意两“变”:①改变运算符号;
②改变减数的性质符号(变为相反数)
有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
¤有理数的加减法混合运算的步骤:
①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;
②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)
※有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
※如果两个数互为倒数,则它们的乘积为1。(如:-2与 、 …等)
※乘法的交换律、结合律、分配律在有理数运算中同样适用。
¤有理数乘法运算步骤:①先确定积的符号;
②求出各因数的绝对值的积。
¤乘积为1的两个有理数互为倒数。注意:
①零没有倒数
②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
※有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0除以任何非0的数都得0。0不可作为除数,否则无意义。
指数
底数

※有理数的乘方

※注意:①一个数可以看作是本身的一次方,如5=51;
②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
※乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;
④1的任何次幂都得1,0的任何次幂都得0;
⑤-1的偶次幂得1;-1的奇次幂得-1;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
※有理数混合运算法则:①先算乘方,再算乘除,最后算加减。
②如果有括号,先算括号里面的。

第三章 字母表示数
※代数式的概念:
用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如 应写作 ;
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作 ;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如 平方米
※代数式的系数:
代数式中的数字中的数字因数叫做代数式的系数。如3x,4y的系数分别为3,4。
注意:①单个字母的系数是1,如a的系数是1;
②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。a3b的系数是1
※代数式的项:
代数式 表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项
注意:在交待某一项时,应与前面的符号一起交待。
※同类项:
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件缺一不可;
②同类项与系数无关,与字母的排列顺序无关;
③几个常数项也是同类项。
※合差同类项:
把代数式中的同类项合并成一项,叫做合并同类项。
①合并同类项的理论根据是逆用乘法分配律;
②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
注意:
①如果两个同类项的系数互为相反数,合并同类项后结果为0;
②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;
③只要不再有同类项,就是最后结果,结果还是代数式。
※根据去括号法则去括号:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。
※根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。
※注意:
①去括号时,要连同括号前面的符号一起去掉;
②去括号时,首先要弄清楚括号前是“+”号还是“-”号;
③改变符号时,各项都变号;不改变符号时,各项都不变号。
第四章 平面图形及位置关系
一. 线段、射线、直线
※1. 正确理解直线、射线、线段的概念以及它们的区别:
名称
图形
表示方法
端点
长度
直线

直线AB(或BA)
直线l
无端点
无法度量
射线

射线OM
1个
无法度量
线段

线段AB(或BA)
线段l
2个
可度量长度
※2. 直线公理:经过两点有且只有一条直线.
b
鹏翔教图2
A
O
B
鹏翔教图1
二.比较线段的长短
※1. 线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离.
※2. 比较线段长短的两种方法:
①圆规截取比较法;
②刻度尺度量比较法.
β
鹏翔教图4
※3. 用刻度尺可以画出线段的中点,线段的和、差、倍、分;
1
鹏翔教图3
用圆规可以画出线段的和、差、倍.
三.角的度量与表示
※1. 角:有公共端点的两条射线组成的图形叫做角;
这个公共端点叫做角的顶点;
平角
鹏翔教图6
终边
始边
鹏翔教图5
这两条射线叫做角的边.
※2. 角的表示法:角的符号为“∠”
①用三个字母表示,如图1所示∠AOB
②用一个字母表示,如图2所示∠b
③用一个数字表示,如图3所示∠1
鹏翔教图8
C
A
B
O
④用希腊字母表示,如图4所示∠β

周角
鹏翔教图7

※经过两点有且只有一条直线。
※两点之间的所有连线中,线段最短。
※两点之间线段的长度,叫做这两点之间的距离。
1º=60’ 1’=60”
※角也可以看成是由一条射线绕着它的端点旋转而成的。如图5所示:
※一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。如图6所示:
※终边继续旋转,当它又和始边重合时,所成的角叫做周角。如图7所示:
※从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
※经过直线外一点,有且只有一条直线与这条直线平行。
※如果两条直线都与第三条直线平行,那么这两条直线互相平行。
※互相垂直的两条直线的交点叫做垂足。
※平面内,过一点有且只有一条直线与已知直线垂直。
※如图8所示,过点C作直线AB的垂线,垂足为O点,线段CO的长度叫做点C到直线AB的距离。
第五章 一元一次方程
※在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程。
※等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。
※等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式。
※解方程的步骤:解一元一次方程,一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等几个步骤,把一个一元一次方程“转化”成x=m的形式。
第六章 生活中的数据
※科学记数法:一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法。
※统计图的特点:
折线统计图:能够清晰地反映同一事物在不同时期的变化情况。
条形统计图:能够清晰地反映每个项目的具体数目及之间的大小关系。
扇形统计图:能够清晰地表示各部分在总体中所占的百分比及各部分之间的大小关系
统计图对统计的作用:
(1)可以清晰有效地表达数据。
(2)可以对数据进行分析。
(3)可以获得许多的信息。
(4)可以帮助人们作出合理的决策。
北师大版初一数学定理知识点汇总[七年级下册]
第一章 整式的运算
一. 整式
※1. 单项式
①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.
③一个单项式中,所有字母的指数和叫做这个单项式的次数.
※2.多项式
①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.
②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.
※3.整式单项式和多项式统称为整式.

二. 整式的加减
¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.
三. 同底数幂的乘法
※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);
⑤公式还可以逆用: (m、n均为正整数)
四.幂的乘方与积的乘方
※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.
※2. .
※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
如将(-a)3化成-a3

※4.底数有时形式不同,但可以化成相同。
※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。
※7.幂的乘方与积乘方法则均可逆向运用。
五. 同底数幂的除法
※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).
※2. 在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,
④运算要注意运算顺序.
六. 整式的乘法
※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式。
※2.单项式与多项式相乘
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:
①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
②运算时要注意积的符号,多项式的每一项都包括它前面的符号;
③在混合运算时,要注意运算顺序。
※3.多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
②多项式相乘的结果应注意合并同类项;
③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,
※即 。
¤其结构特征是:
①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;
②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
八.完全平方公式
¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,
¤即 ;
¤口决:首平方,尾平方,2倍乘积在中央;
¤2.结构特征:
①公式左边是二项式的完全平方;
②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。
九.整式的除法
¤1.单项式除法单项式
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
¤2.多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

第二章 平行线与相交线
一.台球桌面上的角
※1.互为余角和互为补角的有关概念与性质
如果两个角的和为90°(或直角),那么这两个角互为余角;
如果两个角的和为180°(或平角),那么这两个角互为补角;
注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。
它们的主要性质:同角或等角的余角相等;
同角或等角的补角相等。
二.探索直线平行的条件
※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:
①同位角相等,两直线平行;
②内错角相等,两直线平行;
③同旁内角互补,两直线平行。
三.平行线的特征
※平行线的特征即平行线的性质定理,共有三条:
①两直线平行,同位角相等;
②两直线平行,内错角相等;
③两直线平行,同旁内角互补。
四.用尺规作线段和角
※1.关于尺规作图
尺规作图是指只用圆规和没有刻度的直尺来作图。
※2.关于尺规的功能
直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
第三章生活中的数据
※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。
¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
¤3.统计工作包括:
①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。

第四章 概率
¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。
※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。
※3.了解必然事件和不可能事件发生的概率。
必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1

※4.了解几何概率这类问题的计算方法
事件发生概率=
第五章 三角形
一.认识三角形
1.关于三角形的概念及其按角的分类
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
这里要注意两点:
①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;
②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
2.关于三角形三条边的关系
根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的另一个性质:三角形任意两边之差小于第三边。
对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。
设三角形三边的长分别为a、b、c则:
①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;
②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。
3.关于三角形的内角和
三角形三个内角的和为180°
①直角三角形的两个锐角互余;
②一个三角形中至多有一个直角或一个钝角;
③一个三角中至少有两个内角是锐角。
4.关于三角形的中线、高和中线
①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;
②任意一个三角形都有三条角平分线,三条中线和三条高;
③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
二.图形的全等
¤能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。
四.全等三角形
¤1.关于全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角
所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。
※2.全等三角形的对应边相等,对应角相等。
¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等。
五.探三角形全等的条件
※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”
※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”
※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”
※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”
六.作三角形
1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。
2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。
3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。
八.探索直三角形全等的条件
※1.斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。
※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。
直角三角形的其他判定方法可以归纳如下:
①两条直角边对应相等的两个直角三角形全等;
②有一个锐角和一条边对应相等的两个直角三角形全等。
③三条边对应相等的两个直角三角形全等。

第七章 生活中的轴对称
※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
※2.角平分线上的点到角两边距离相等。
※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。
※4.角、线段和等腰三角形是轴对称图形。
※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
※6.轴对称图形上对应点所连的线段被对称轴垂直平分。
※7.轴对称图形上对应线段相等、对应角相等。

(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)

㈥ 七年级上册数学教研

七年级数学上册复习提纲
第一章 有理数
1.1 正数与负数
①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)
②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。
③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等
1.2 有理数
1.有理数(1)整数:正整数、0、负整数统称整数(integer),
(2)分数;正分数和负分数统称分数(fraction)。
(3)有理数;整数和分数统称有理数(rational number). 以用m/n(其中m,n是整数,n≠0)表示有理数。
2.数轴(1)定义 :通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
(2)数轴三要素:原点、正方向、单位长度。
(3)原点:在直线上任取一个点表示数0,这个点叫做原点(origin)。
(4)数轴上的点和有理数的关系:
所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。从几何意义上讲,数的绝对值是两点间的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
①有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
加法的交换律和结合律
②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。乘法交换律/结合律/分配律
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
1.5 有理数的乘方
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.

分类 有理数大小的比较
加减
正数与负数→有理数
数轴、相反数 乘除
绝对值、倒数 有理数运算 有理数的运算律→运算结果→符号/
绝对值
乘方/开方→科学计数法→近似数/有效数/精确度

混合运算

第二章 整式的加减
2.1 整式
单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.
单项式的系数:是指单项式中的数字因数;
单项数的次数:是指单项式中所有字母的指数的和.
多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.
它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
单项式和多项式统称为整式。
2.2整式的加减
同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关
合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
合并同类项法则:
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。
如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。
整式加减的一般步骤:
1、如果遇到括号按去括号法则先去括号. 2、结合同类项. 3、合并同类项
2.3整式的乘法法则 :
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;
单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
2.4整式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

单项式:单项式的次数、系数
分类
多项式:多项式的项数、系数、次数→升降幂排列
列式子→整式
去添括号
整式的加减
合并同类项

第三章 一元一次方程
3.1 一元一次方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
注意判断一个方程是否是一元一次方程要抓住三点:
1)未知数所在的式子是整式(方程是整式方程);
2)化简后方程中只含有一个未知数;
3)经整理后方程中未知数的次数是1.
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等).
2)等式两边同时乘以或除以同一个不为零的数,等式不变.
注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.
3.2 解一元一次方程(一)----合并同类项与移项
一般步骤:移项→合并同类项→系数化1;(可以省略部分)
了解无限循环小数化分数的方法,从而证明它是分数,也就是有理数。
3.3 解一元一次方程(二)----去括号与去分母
一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;
以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用. 因此,解方程时,要根据方程的特点,灵活选择方法. 在解方程时还要注意以下几点:
①去分母,在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;
②去括号遵从先去小括号,再去中括号,最后去大括号 不要漏乘括号的项;不要弄错符号;
③移项 把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号;
④不要丢项合并同类项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.
⑤把方程化成ax=b(a≠0)的形式 字母及其指数不变系数化成1 在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒
3.4 实际问题与一元一次方程
一.概念梳理
⑴列一元一次方程解决实际问题的一般步骤是:
①审题,特别注意关键的字和词的意义,弄清相关数量关系,
②设出未知数(注意单位),
③根据相等关系列出方程,
④解这个方程,
⑤检验并写出答案(包括单位名称).
⑵一些固定模型中的等量关系:
①数字问题:表示一个三位数,则有
②行程问题:甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程
甲走的时间=乙走的时间;
甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间的距离
③工程问题:各部分工作量之和 = 总工作量;
④储蓄问题:本息和=本金+利息
⑤商品销售问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价或商品售价=商品成本价×(1+利润率)
⑥产油量=油菜籽亩产量X含油率X种植面积
二.思想方法(本单元常用到的数学思想方法小结)
⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.
⑵方程思想:用方程解决实际问题的思想就是方程思想.
⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.
⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.
⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.
三.典型例题
例1. 已知方程2xm-3+3x=5是一元一次方程,则m= .
解:由一元一次方程的定义可知m-3=1,解得m=4.或m-3=0,解得m=3
所以m=4或m=3
警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里一定要注意x的指数是(m-3).
例2. 已知是方程ax2-(2a-3)x+5=0的解,求a的值.
解:∵x=-2是方程ax2-(2a-3)x+5=0的解
∴将x=-2代入方程,
得 a·(-2)2-(2a-3)·(-2)+5=0
化简,得 4a+4a-6+5=0
∴ a=
点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=-2代入方程,然后再解关于a的一元一次方程就可以了.
例3. 解方程2(x+1)-3(4x-3)=9(1-x).
解:去括号,得 2x+2-12x+9=9-9x,
移项,得 2+9-9=12x-2x-9x.
合并同类项,得 2=x,即x=2.
点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边,已知项移到方程的右边,其实,我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正,为了减少计算的难度,我们可以根据等式的对称性,把所有的未知项移到右边去,已知项移到方程的左边,最后再写成x=a的形式.
例4. 解方程 .
解析:方程两边乘以8,再移项合并同类项,得
同样,方程两边乘以6,再移项合并同类项,得
方程两边乘以4,再移项合并同类项,得
方程两边乘以2,再移项合并同类项,得x=3.
说明:解方程时,遇到多重括号,一般的方法是从里往外或从外往里运用乘法的分配律逐层去特号,而本题最简捷的方法却不是这样,是通过方程两边分别乘以一个数,达到去分母和去括号的目的。
例5. 解方程.
解析:方程可以化为
整理,得
去括号移项合并同类项,得 -7x=11,所以x=.
说明:一见到此方程,许多同学立即想到老师介绍的方法,那就是把分母化成整数,即各分数分子分母都乘以10,再设法去分母,其实,仔细观察这个方程,我们可以将分母化成整数与去分母两步一步到位,第一个分数分子分母都乘以2,第二个分数分子分母都乘以5,第三个分数分子分母都乘以10.
例6. 解方程
解析:原方程可化为
方程即为
所以有
再来解之,就能很快得到答案: x=3.
知识链接:此题如果直接去分母,或者通分,数字较大,运算烦琐,发现分母6=2×3,12=3×4,20=4×5,30=5×6,联系到我们小学曾做过这样的分式化简题,故采用拆项法解之比较简便.
例7. 参加某保险公司的医疗保险,住院治疗的病人可享受分段报销,保险公司制度的报销细则如下表,某人今年住院治疗后得到保险公司报销的金额是1260元,那么此人的实际医疗费是( )
住院医疗费(元) 报销率(%)
不超过500的部分 0
超过500~1000的部分 60
超过1000~3000的部分 80
…… …
 A. 2600元 B. 2200元 C. 2575元 D. 2525元
解析:设此人的实际医疗费为x元,根据题意列方程,得
500×0+500×60%+(x-500-500) ×80%=1260.
解之,得x=2200,即此人的实际医疗费是2200元. 故选B.
点拨:解答本题首先要弄清题意,读懂图表,从中应理解医疗费是分段计算累加求和而得的. 因为500×60%<1260<2000×80%,所以可知判断此人的医疗费用应按第一档至第三档累加计算.
例8. 我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某户居民今年5月缴纳了17元水费,那么这户居民今年5月的用水量为__________立方米.
解析:由于1×7<17,所以该户居民今年5月的用水量超标.
设这户居民5月的用水量为x立方米,可得方程:7×1+2(x-7)=17,
解得x=12.
所以,这户居民5月的用水量为12立方米.
例9. 足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分,一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分,请问:
⑴前8场比赛中,这支球队共胜了多少场?
⑵这支球队打满14场比赛,最高能得多少分?
⑶通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?
解析:⑴设这个球队胜了x场,则平了(8-1-x)场,根据题意,得
3x+(8-1-x)=17. 解得x=5.
所以,前8场比赛中,这个球队共胜了5场.
⑵打满14场比赛最高能得17+(14-8)×3=35分.
⑶由题意知,以后的6场比赛中,只要得分不低于12分即可.
∴胜不少于4场,一定能达到预期目标. 而胜了3场,平3场,正好达到预期目标. 所以在以后的比赛中,这个球队至少要胜3场.
例10. 国家为了鼓励青少年成才,特别是贫困家庭的孩子能上得起大学,设置了教育储蓄,其优惠在于,目前暂不征收利息税. 为了准备小雷5年后上大学的学费6000元,他的父母现在就参加了教育储蓄,小雷和他父母讨论了以下两种方案:
⑴先存一个2年期,2年后将本息和再转存一个3年期;
⑵直接存入一个5年期.
你认为以上两种方案,哪种开始存入的本金较少?
[教育储蓄(整存整取)年利率一年:2. 25%;二年:2. 27%;三年:3. 24%;五年:3. 60%. ]
解析:了解储蓄的有关知识,掌握利息的计算方法,是解决这类问题的关键,对于此题,我们可以设小雷父母开始存入x元. 然后分别计算两种方案哪种开始存入的本金较少.
⑴2年后,本息和为x(1+2. 70%×2)=1. 054x;
再存3年后,本息和要达到6000元,则1. 054x(1+3. 24%×3)=6000.
解得 x≈5188.
⑵按第二种方案,可得方程 x(1+3. 60%×5)=6000.
解得 x≈5085.
所以,按他们讨论的第二种方案,开始存入的本金比较少.
例11. 扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示. 如果长方体盒子的长比宽多4,求这种药品包装盒的体积.

分析:从展开图上的数据可以看出,展开图中两高与两宽和为14cm,所以一个宽与一个高的和为7cm,如果设这种药品包装盒的宽为xcm,则高为(7-x)cm,因为长比宽多4cm,所以长为(x+4)cm,根据展开图可知一个长与两个高的和为13cm,由此可列出方程.
解:设这种药品包装盒的宽为xcm,则高为(7-x)cm,长为(x+4)cm.
根据题意,得(x+4)+2(7-x)=13,
解得 x=5,所以7-x=2,x+4=9.
故长为9cm,宽为5cm,高为2cm.
所以这种药品包装盒的体积为:9×5×2=90(cm3).
例12. 某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.
解:设这个月的石油价格相对上个月的增长率为x. 根据题意得
(1+x)(1-5%)=1+14% 解得x=20%
答:这个月的石油价格相对上个月的增长率为20%.
点评:本题是一道增长率的应用题. 本月的进口石油的费用等于上个月的费用加上增加的费用,也就是本月的石油进口量乘以本月的价格. 设出未知数,分别表示出每一个数量,列出方程进行求解. 列方程解应用题的关键是找对等量关系,然用代数式表示出其中的量,列方程解答.
例13. 某市参加省初中数学竞赛的选手平均分数为78分,其中参赛的男选手比女选手多50%,而女选手的平均分比男选手的平均分数高10%,那么女选手的平均分数为____________.
解析:总平均分数和参赛选手的人数及其得分有关. 因此,必须增设男选手或女选手的人数为辅助未知数. 不妨设男选手的平均分数为x分,女选手的人数为a 人,那么女选手的平均分数为1. 1x分,男选手的人数为1. 5a人,从而可列出方程,解得x=75,所以1. 1x=82. 5. 即女选手的平均分数为82. 5分.
四、数学思想方法的学习
1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.
2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等. 3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;⑵是要判断方程的解是否符合题目中的实际意义.
【模拟试题】
一、选择题:
1. 几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( )
A、28 B、33 C、45 D、57
2. 已知y=1是方程2-的解,则关于x的方程m(x+4)=m(2x+4)的解是( )A、x=1 B、x=-1 C、x=0 D、方程无解
3 某种商品的进价为1200元,标价为1750元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于%,则至多可打( )
A、6折 B、7折 C、8折 D、9折
4. 下列说法中,正确的是( )
A、代数式是方程 B、方程是代数式 C、等式是方程 D、方程是等式
5. 一个数的与2的差等于这个数的一半.这个数是( )
A、12 B、–12 C、18 D、–18
6. 母亲26岁结婚,第二年生了儿子,若干年后,母亲的年龄是儿子的3倍. 此时母亲的年龄为( )
A、39岁 B、42岁 C、45岁 D、48岁
7. A、B两地相距240千米,火车按原来的速度行驶需要4小时到达目的地,火车提速后,速度比原来加快30%,那么提速后只需要( )即可到达目的地。
A、小时 B、小时 C、小时 D、小时
二、填空题
8. 已知甲数比乙数的2倍大1,如果设甲数为x,那么乙数可表示为_____;如果设乙数为y,那么甲数可表示为_________.
9. 欢欢的生日在8月份.在今年的8月份日历上,欢欢生日那天的上、下、左、右4个日期的和为76,那么欢欢的生日是该月的 号.
10. 从甲地到乙地,公共汽车原需行驶7小时,开通高速公路后,车速平均每小时增加了20千米,只需5小时即可到达。甲乙两地的路程是 ;
三、解答题
11. 解下列方程
(1) (2)
12. 一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”. 经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元的罚款. 求每台彩电的原价格.
13. 小明的爸爸三年前为小明存了一份 3000元的教育储蓄. 今年到期时取出,得本利和为3243元. 请你帮小明算一算这种储蓄的年利率.
14. 在社会实践活动中,某校甲、乙、丙三位同学一起调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:
甲同学说:“二环路车流量为每小时10 000辆”.
乙同学说:“四环路比三环路车流量每小时多2000辆”.
丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”.
请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?
【试题答案】
1. A. [提示:日历上纵列上的三个数的和是中间一个数的3倍]
2. C. [提示:将y=1代入方程得m的值,再将m代入m(x+4)=m(2x+4)]
3. C. [提示:设至多可打x折,可得方程解得x=0. 8]
4. D. [提示:方程是含未知数的等式]
5. B. [提示:设这个数为x. 可得方程. 解得x=-12. ]
6. A. [提示:设x年后,母亲的年龄是儿子的3倍,可得方程27+x=3(1+x)]
7. B. [提示:设原来速度为x千米/时,则x=60千米/时]
8. ,2y+1 [提示:根据等量关系甲数=2×乙数+1来解此题]
9. 19 [提示:设欢欢的生日为x号,可得方程x-1+x+1+x+7+x-7=76]
10. 350千米 [提示:设间接未知数,设原车速为x千米/时,则开通高速公路后,车速为(x+20)千米/时,列方程得7x=5(x+20),解得x=50,所以两地路程为7×50=350(千米).
11. ⑴去括号,得5x+40=12x-42+5 移项合并同类项,得7x=77 系数化1,得 x=11
⑵去分母,得3(x+2)-2(2x-3)=12 去括号,得3x+6-4x+6=12 移项合并同类项,得 x=0
根据题意,可得方程=3
再解这个方程,得x=5 所以,当x=5时,代数式的值等于3.
12. 设每台彩电的原价格为x元,根据题意,列方程得
[(1+40%)x·0. 8-x] ×10=2700
解这个方程,得x=2250,答:每台彩电的原价为2250元.
13. 设这种储蓄的年利率为x,根据题意,列方程
3000+3000x·3=3243,解这个方程,得x=0. 027,即x=2. 7%,
答:这种储蓄的年利率为2. 7%.
14. 设三环路的车流量是每小时x辆,则四环路为(x+2000)辆,根据题意,列方程,得
3x-(x+2000)=2×10000,解得x=11000,所以x+2000=13000,
答:三环路的车流量为11000辆,四环路的车流量为13000辆.

第四章 图形认识初步
4.1 多姿多彩的图形
形状:方的、园的等
几何图形 大小:长度、面积、体积等
位置:相交、垂直、平行等
几何体也简称体(solid)。包围着体的是面(surface)。
常见的立体图形(solid figure):柱体、椎体、球体等各部分不都在一个平面内。在一个平面内就是平面图形(plane figure)。
展开图(net):识记一些常用的展开图。圆柱/圆锥的侧面展开图;
点线面体:是组成几何图形的基本元素。
4.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
经过两点有一条直线,并且只有一条直线。两点确定一条直线。
4.3 角
定义:有公共端点的两条射线组成的图形叫角。角的端点为顶点,两条射线为角的两边。
1度=60分 1分=60秒 1周角=360度 1平角=180度
角的比较与运算
角的平分线:
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。等角(同角)的余角相等。
实际运用:航海的坐标角度:“上北下南左西右东”.
4.4 设计制作长方形形状的包装纸盒

㈦ 七年级上(北师大)数学复习提纲!!急急急!!!!

地理

别提醒:本试题答案要求答在答卷纸上
一、你会判断吗?千万要细心。(单项选择题:下列1~30题的选项中,只有一个正确答案,请将你认为正确的答案填入答题卷的表中。每选对一项得2分,共60分。)
1.下列地方,位于亚洲、北美洲分界线上的是:( )
A.苏伊士运河 B.白令海峡 C.巴拿马运河 D.直布罗陀海峡
2.亚洲的第一长河是:( ) A.长江 B.印度河 C.叶尼塞河 D.鄂毕河
3.世界最大的半岛是:( ) A.中南半岛 B.印度半岛 C.小亚细亚半岛 D.阿拉伯半岛
4.亚洲各国中,人口超过1亿的国家数目是:( )A.4个 B.5个 C.6个 D.7个
5.沙特阿拉伯的贝都因人的住房通常是:( )
A.高脚屋 B.帐篷 C.木屋 D.冰屋
6.人口自然增长率最大和最小的大洲是:( )
A.亚洲和非洲 B.非洲和欧洲 C.南美洲和欧洲 D.大洋洲和亚洲
7.各民族传统民居建筑风格不同,主要与那个因素相关
A.自然条件 B.宗教信仰 C.交通条件 D.个人爱好
8.雅库茨克和孟买的气温差别显着的原因是
A.纬度不同 B.降水不同 C.地形不同 D.经度不同
9.2000年3月,北海道南部喷发的火山是:( )
A.富士山 B.有珠火山 C.维苏威火山 D.喀拉喀托火山
10.日本投资建厂的主要对象是:( ) ①美国 ②西欧 ③南亚 ④东亚 ⑤东南亚
A.①②③④ B.①②④⑤ C.①③④⑤ D.②③④⑤
11.下列汽车品牌,属于日本的是:( ) A.奔驰 B.桑塔纳 C.丰田 D.奥迪
12.世界最大的大洲和最小的大洲分别是( )
A.南美洲和南极洲 B、亚洲和大洋洲 C、北美洲和非洲 D、非洲和大洋洲
13.下列对亚洲气候特点的叙述,不正确的是( )
A.气候类型复杂多样 B、季风气候显着
C、温带大陆性气候分布面积最广 D.受海洋影响明显
14.世界上人口最多的国家是( ) A.中国 B、俄罗斯 C美国 D 日本
15.位于亚洲的发达国家是 ( ) A.新西兰 B、韩国 C、日本 D 中国
16.下列关于日本自然地理的特征的说法,错误的是( )
A.日本是一个群岛国家 B、日本位于太平洋地区,多火山、地震
C.日本矿产资源非常丰富 D、日本海岸线曲折,多优良港湾
17 、日本最大的岛屿是( ) A、北海道岛 B、本州岛 C、九州岛 D、四国岛
18、日本发展经济的有利条件是( )
A、历史悠久,经验丰富 B、有丰富的原材料
C、人口众多,国内市场广阔 D、沿海多优良港湾
下表是亚洲部分国家1998年人均国民生产总值从大到小的排序。读表回答19-21小题:
国家 人均国民生产
总值(美元) 国家 人均国民生产总值(美元) 国家 人均国民生产
总值(美元)
日本 32350 沙特阿拉伯 6910 印度 440
新加坡 30170 马来西亚 3670 蒙古 380
以色列 16280 泰国 2160 越南 350
韩国 8600 中国 750 尼泊尔 210
19.根据表中人均国民生产总值判断:
A、亚洲各国经济发展是不平衡的 B、亚洲国家多样化
C、国与国之间的地位不平等 D、亚洲国家很多
20.对表中一些国家的景观描述,你认为正确的是:
A、沙特阿拉伯贝都因人身穿宽大袍子 B、蒙古人以船为主要交通工具
C、新加坡人生活空间辽阔而优越 D、尼泊尔人生活在沙漠环境中
21.中国名着《西游记》中,唐僧西天取经中的“西天”和“经”分别指:
A、西亚、伊斯兰教B、阿拉伯半岛、基督教 C、耶路撒冷、犹太教D、古印度国、佛教
22.下列世界文明发祥地不属于亚洲的是
A、两河流域 B、黄河、长江中下游地区 C、尼罗河三角洲 D、印度河流域
23.从中国输入日本的商品主要有 A、钢材 B、电子产品 C、木材 D、纺织品
24.日本经济发达的主要原因之一是
A、本国自然条件十分优越,资源丰富
B、人口众多,国内市场大
C、农业发达,为工业发展提供了丰富的原材料
D、进口原料,出口产品,积极开拓国际市场
25.一艘货轮在西亚伊朗的某港口装船外运。装船的货物,最有可能是:
A、小麦 B、石油 C、大米 D、煤
26.阿拉伯人喜爱白色,建筑物和男人传统的服装是白色,其原因与什么有关?
A、文化传统 B、生活习惯 C、当地的自然环境 D、宗教
27.亚洲东部、南部是典型的季风气候,其对下列各项影响最大的是
A、农业 B、工业 C、商业 D、交通
28.关于民族的说法,正确的是
A、不同民族都有自己的语言、文字 B、不同民族都有相同的语言、文字
C、不同的气候形成不同的民族 D、不同国家可能有相同的民族
29.关于世界各国经济发展的叙述中,正确的是
①没有完全相同的国家 ②发展都很快 ③有完全相同的国家 ④贫富相差悬殊
A.①② B.①④ C.③④ D.②③
30.日本在美国投资建厂的主要原因是
A、美国经济发达,购买能力强,市场广大 B、原材料成本低
C、工资成本低 D、产品质量高

㈧ 初一数学上半学期第一章 提纲!

第一章 有理数★有理数的分类1.如果按定义分,有理数可以分为整数(正整数;负整数;0)和分数(正分数,负分数)。如果按正、负分,有理数可以分为正有理数(正整数;正分数)、0、负有理数(负整数;负分数)。2.所有的有理数都可以用分数表示,π不是有理数。数轴★1.数轴的定义:规定了原点、正方向、单位长度的直线叫做数轴。相反数1.只有符号不同的两个数叫做互为相反数。(0的相反数是0)绝对值1.数轴上一点a到原点的距离表示a的绝对值。★2.绝对值的性质:非负性。3.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。有理数的大小1.正数大于0,负数小于0,正数大于负数。2.两个负数,绝对值大的反而小。有理数的加法1.同号两数相加,取相同的符号,并把绝对值相加。2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。一个数同0相加,仍得这个数。3.在有理数的加法中,加法交换率:两个数相加,交换加数的位置,和不变。加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。有理数的减法减去一个数,等于加这个数的相反数。★有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与0相乘后得0。倒数:乘积是1的两个数互为倒数。乘法交换律:乘法交换律 两个数相乘,交换因数的位置,积不变。 乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。 乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。★有理数的除法除以某个不为0数等于乘与这个数的倒数两数相除同号为正,异号为负,并把绝对值相除0除以任何一个不等于0的数,都等于0。有理数的混合运算1. 运算顺序:先算乘方,再算乘除,最后算加减。如果是同级运算,则按从左到右的运算顺序计算。如果有括号,先算小括号,再算中括号,最后算大括号。有理数的乘方★1.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 中,a叫底数,叫做指数。当 看做a的n次方时的结果时,也可以读作a的n次幂。★2.负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0科学计数法1.科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种记数方法叫科学记数法。近似数1.一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。★2.有效数字:在一个数中,从左边第一个不是0的数字起,到精确到位数止,所有的数字,都叫这个数字的有效数字。 第二章 整式的加减单项式1.单项式的定义:数或字母的乘积叫做单项式,单独做一个数或字母也是单项式。2.系数:单项式中的数字因数3.次数:单项式中所有的字母的指数和★多项式1.几个单项式的和叫做多项式。2.每个单项式叫做多项式的项。3.不含字母的项叫做常数项。4.多项式里次数最高项的次数,叫做这个多项式的次数。多项式里次数最高的那一项叫做多项式的最高次项。★5.多项式中没有次数。整式1.单项式和多项式统称为整式。整式的加减1.所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。2.把多项式中的同类项合并成一项,叫做合并同类项。3.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。合并同类项——去括号★1.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。 第三章 一元一次方程一元一次方程1.方程是含有未知数的等式。2.方程是等式,等式不一定是方程。3.只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。列方程1.分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。2.列方程是解决问题的重要方法,利用方程可以解出未知数。解方程1.解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。等式的性质★1.等式的性质1 等式两边同时加(减)同一个数(或式子),结果仍相等。★2.等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。合并同类项1.把多项式中同类项合成一项,叫做合并同类项。移项把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。★去括号1.括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变2.括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。 第四章 图形认识初步几何图形1.点、线、面、体都称为几何图形。2.几何图形一般分为立体图形和平面图形。3.有一些几何图形的各部分都不在同一平面内,它们是立体图形。4.有一些几何图形的各部分都在同一平面内,它们是平面图形。展开图1.有些立体图形是有一些平面图形组成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。点、线、面、体1.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。几何体也简称体。 2.包围着体的是面。面有平的面和曲的面两种。 3.点动成线,线动成面,面动成体。4.几何体都是由点、线、面、体组成的。5.点是构成图形的基本元素。直线、射线、线段1.经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线。2.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。 3.把线段分成相等的两条线段的点叫做此线段的中点。 4.两点的所有连线中,线段最短。简述为:两点之间,线段最短。 5.连接两点间的线段的长度,叫做这两点的距离。 角 1.由公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。 2.角的度、分、秒是60进制的。(如:1°=60′,1′=60″) 3.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。 4.如果两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。 5.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。 6.★等角的补角相等。★等角的余角相等。

阅读全文

与七年级上册数学提纲怎么写相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:747
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1364
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1423
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1008
武大的分析化学怎么样 浏览:1256
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1668
下列哪个水飞蓟素化学结构 浏览:1431
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1072