❶ state中怎样计算条件期望
条件期望怎么算?在概率论中,条件期望是一个实数随机变量的相对于一个条件概率分布的期望值。换句话说,这是给定的一个或多个其他变量的值一个变量的期望值。它也被称为条件期望值设X和Y是离散随机变量,则X的条件期望在给定事件Y = y条件下是y的在Y的值域的函数。条件期望函数其中,是x处于X的值域。如果X是一个连续随机变量,而在Y仍然是一个离散变量,条件期望是:条件期望其中,是在给定Y=y下X的条件概率密度函数。应用条件数学期望在近代概率论中有着基本重要的作用,在实际问题中也有很大用处。在两个互有影响的随机变量中,如果已知其中一个随机变量的取值=y,要据此去估计或预测另一个随机变量的取值,这样的问题在实际应用中经常会碰到。人们称它为“预测问题”。由上述讨论可知,条件数学期望E( )是在已知(=y)发生的条件下,对 的一个颇为“合理”的预测。一般认为,人的身高和脚印长可当作一个二维正态分布变量来处理。把它画在平面的直角坐标系中就是一条直线,它在一定程度上描写了身高依赖于脚印的关系,常常称为是回归直线。在一般情形下,由E( x,y) 或{x,E( x)}可以得到平面上的两条曲线,它们称为是回归曲线或简称为回归。
❷ 数学期望的计算公式,具体怎么计算
公式主要为:
性质3和性质4可以推到到任意有限个相互独立的随机变量之和或之积的情况。
参考资料:数学期望-网络
❸ 条件期望的数学期望
条件分布函数F(y|x)或条件密度函数P(y|x)描写了随机变量 在已知(=y)发生的条件下的统计规律,同样离散型情形一样,还可以求在(=y)发生的条件下的数学期望,也就是条件数学期望,于是有下述定义。
定义5.1如果随机变量 在已知(=y)发生的条件下的条件密度函数为P(y|x),若
则称
E( )= (3.90)
为在( =y)发生的条件下的数学期望,或简称为条件期望。
同离散型情形相同,连续型随机变量的条件期望也具有下述性质:
(1)若a≤ ≤b,则a≤E( )≤b;
(2)若是 、 两个常数,又E( )(i=1,2)存在,则有
E( )=E( )+E( )
进一步还可以把E( )看成是 的函数,当时这个函数取值为E( ),记这个函数为E( ),它是一个随机变量,可以对它求数学期望,仍与离散型相同,有
(3)E(E)=E。
❹ 条件期望怎么算
条件期望怎么算?在概率论中,条件期望是一个实数随机变量的相对于一个条件概率分布的期望值。换句话说,这是给定的一个或多个其他变量的值一个变量的期望值。它也被称为条件期望值。
设X和Y是离散随机变量,则X的条件期望在给定事件Y = y条件下是y的在Y的值域的函数
条件期望函数
其中,是x处于X的值域。
如果X是一个连续随机变量,而在Y仍然是一个离散变量,条件期望是:
条件期望
其中,
是在给定Y=y下X的条件概率密度函数。
应用
条件数学期望在近代概率论中有着基本重要的作用[2],在实际问题中也有很大用处。在两个互有影响的随机变量中,如果已知其中一个随机变量的取值=y,要据此去估计或预测另一个随机变量的取值,这样的问题在实际应用中经常会碰到。人们称它为“预测问题”。由上述讨论可知,条件数学期望E( )是在已知(=y)发生的条件下,对 的一个颇为“合理”的预测。
一般认为,人的身高和脚印长可当作一个二维正态分布变量来处理。
把它画在平面的直角坐标系中就是一条直线,它在一定程度上描写了身高依赖于脚印的关系,常常称为是回归直线。在一般情形下,由
E( x,y) 或{x,E( x)}
可以得到平面上的两条曲线,它们称为是回归曲线或简称为回归。
❺ 设(X,Y)~N(0,0,1,1,p)求条件数学期望E(Y|X)
因为:ρxy=0,所以X与Y相互独立,
又:X~N(1,4),Y~N(0,1),
由正态分布的性质可得,X+Y也服从正态分布,
由数学期望与方差的性质可得:
E(X+Y)=E(X)+E(Y)=1,D(X+Y)=D(X)+D(Y)=5,
故:X+Y~N(1,5),
所以E(Y|X)=0.5。
(5)条件数学期望如何计算扩展阅读
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。
例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数等,因而称这随机变量是连续型随机变量。
❻ 什么是数学期望如何计算
数学期望是试验中每次可能结果的概率乘以其结果的总和。
计算公式:
1、离散型:
离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:
❼ 如何求随机变量上的条件数学期望
数学期望是int(x*f(x))f(x)是随机变数x的概率密度函数。
❽ 数学期望怎么算
数学期望求解的方法是:X是离散型随机变量,其全部可能取值是a1,a2,a3等到an取这些值的相应概率是p1,p2,p3等到pn,则其数学期望E(X)=(a1)*(p1)+(a2)*(p2)+…+(an)*(pn)。在概率论和统计学中,数学期望是试验中每次可能结果的概率乘以其结果的总和。也是最基本的数学特征之一。它反映随机变量平均取值的大小。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
❾ 数学里面期望值是什么怎么算
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
期望值计算:
(9)条件数学期望如何计算扩展阅读:
期望值学术解释:
1.期望值是指人们对所实现的目标主观上的一种估计;
2.期望值是指人们对自己的行为和努力能否导致所企求之结果的主观估计,即根据个体经验判断实现其目标可能性的大小;
3.期望值是指对某种激励效能的预测;
4.期望值是指社会大众对处在某一社会地位、角色的个人或阶层所应当具有的道德水准和人生观、价值观的全部内涵的一种主观愿望。
期望的来源:
在17世纪,有一个赌徒向法国着名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,分配这100法郎:
用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。
可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。