① 数学中的N、N+、Z、Q、R都是什么意思
N是自然数集,也叫非负整数集,例如:0、1、2、3......
N+(或N*)是正整数集,例如:1、2、3......
Z是全体整数集合,例如:-2、-1、0、1、2......
Q是有理数集,R是实数集
② 数学中字母的含义Z,N,Q,R分别代表什么数
Z表示整数集,N表示自然数集,Q表示有理数集,R表示实数集。
③ N和Z在数学上表示什么
用于数的集合时,N表示自然数,Z表示整数。
④ z n数学符号代表什么
N:非负整数集合或自然数集合{0,1,2,3,…n}
R:实数集合(包括有理数和无理数)
Z:整数集合{…,-1,0,1,…}
Q:有理数集合
N*/ N+:正整数集合{1,2,3,…n}
在数学中没有用Z*表示的概念。
其他常见集合符号:
Q+:正有理数集合
Q-:负有理数集合
R+:正实数集合
R-:负实数集合
C:复数集合(即含有虚数和实数的结合,如3+2i)
∅ :空集(不含有任何元素)
集合元素的特征
元素的特征有三个,即确定性、互异性和无序性。
1、对于一个给定的集合,集合中的元素是肯定的,任何一个对象要么是要么不是这个集合里的元素,这就是元素的确定性。
2、任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这就是元素的互异性。
3、集合中的元素是平等的,没有先后顺序。因此判断两个集合是否一样,仅需比较它们的元素是否一样,不需考察排列顺序是否一样,这就是元素的无序性。
4、集合元素的三个特性使集合本身具有了确定性和稳定性。
⑤ 数学集合中Z,Q ,N 分别 代表的是什么
Z:整数,Q:有理数,N:自然数(包括零)
⑥ 在数学中,Z N Q代表什么
在数学中,Z ,N ,Q代表什么
z代表整数集
N代表自然数集
Q代表有理数 集
⑦ 数学中Z.N代表什么
数学中Z代表整数
数学中N代表自然数
⑧ 数学中R,Z,N,Q都代表什么意思
R:实数集合(包括有理数和无理数);Z:整数集合{…,-1,0,1,…};N表示非负整数集;Q表示有理数集。
其他表示:
N:非负整数集合或自然数集合{0,1,2,3,…}
N*或N+:正整数集合{1,2,3,…}
Q+:正有理数集合
Q-:负有理数集合
R+:正实数集合
R-:负实数集合
C:复数集合
∅ :空集(不含有任何元素的集合)
(8)数学z和n代表什么扩展阅读:
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义。
即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体 。
⑨ 数学集合中Q、N、Z表示的意义是什么
Q表示有理数集
N表示非负整数集{0,1,2,3……}
Z表示整数集合{-1,0,1……}
集合中其他字母的含义:
R:实数集合(包括有理数和无理数)
N*/N+:正整数集合{1,2,3,……}
C:复数集合
∅ :空集(不含有任何元素的集合)
Q+:正有理数集合
Q-:负有理数集合
R+:正实数集合
R-:负实数集合
集合的三大特性
1、互异性
集合的互异性是指“对于一个给定的集合,集合中的元素是互异的”,就是说,“对于一个给定的集合,它的任何两个元素都是不同的”。因此,如果把两个集合{1,2,3,4}、{3,4,5,6,7}的元素合并在一起构成的一个新集合只有1,2,3,4,5,6,7这七个元素,不能写成{1,2,3,4,3,4,5,6,7}。
2、确定性
集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。可从两个方面理解:一方面是从元素的意义上可以理解为“对于一个给定的集合,集合中的元素是确定的”;
另一方面是从元素与集合的关系上可以理解为元素与集合只能是属于和不属于的关系,也就是设A是一个给定的集合,a是某一具体对象,则对象a或者是A中的元素,即a∈A,或者不是A中的元素,即a∈A,只有这两种情形,两种情况必有一种且只有一种成立,没有第三种情形发生。
3、无序性
集合的无序性是指表示一个集合时,构成这个集合的元素是无序的,例如对于由1,2,3,4,5这五个数组成的集合,我们可以记为{1,2,3,4,5},也可以记为{3,1,2,5,4}。