㈠ 高中数学函数周期的求法
周期有个固定的公式为:
t=2π/ω,其中ω为未知数的系数
例如:y=sin2x吧,其中 ω=2
故,周期t=2π/2=π
望采纳,不懂欢迎追问!!!
㈡ 周期t公式是什么
物理上的周期一般有两个计算公式:
1、T=2πr/v(周期=圆的周长÷线速度);
2、T=2π/ω(“ω”代表角速度)。
若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。
在计算机中,完成一个循环所需要的时间;或访问一次存储器所需要的时间,亦称为周期 。周期函数的实质:两个自变量值整体的差等于周期的倍数时,两个自变量值整体的函数值相等。如:f(x+6) =f(x-2)则函数周期为T=8。
(2)高一数学必修四周期T怎么算扩展阅读
周期与频率:T=1/f
卫星绕行速度、角速度、周期:
V=(GM/r)^1/2;ω=(GM/r3)^1/2
T=2π(r3/GM)^1/2{M:中心天体质量}
若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。
对于函数y=f(x)。
如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。
并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
㈢ 周期怎么算数学公式
f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。
sinx的函数周期公式T=2π,sinx是正弦函数,周期是2π
cosx的函数周期公式T=2π,cosx是余弦函数,周期2π。
tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切
secx 和cscx的函数周期公式T=2π,secx和cscx是正割和余割。
(3)高一数学必修四周期T怎么算扩展阅读:
y=Asin(wx+b) 周期公式T=2π/w
y=Acos(wx+b) 周期公式T=2π/w
y=Atan(wx+b) 周期公式T=π/w
重要推论:
如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。
如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。
如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b, 0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。
㈣ 周期T怎么求
求周期t的公式:T=2πr/v。物理中,周期的国际单位制单位是秒(s)。周期就是物体作往复运动或物理量作周而复始的变化时,重复一次所经历的时间。
时间,是物质的运动、变化的持续性、顺序性的表现,包含时刻和时段两个概念。时间是人类用以描述物质运动过程或事件发生过程的一个参数,确定时间,是靠不受外界影响的物质周期变化的规律。
㈤ 高一必修四三角函数最小正周期怎么求
设三角函数为
y=Asin(wx+p)(cos也一样)
则最小正周期为T=|2π/w|
如果三角函数是
y=Atan(wx+p)(cot也一样)
那么最小正周期为T=|π/w
㈥ 周期T的计算公式,求解答
物理上的周期一般有两个计算公式:
1、T=2πr/v(周期=圆的周长÷线速度);
2、T=2π/ω(“ω”代表角速度)。
若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。
在计算机中,完成一个循环所需要的时间;或访问一次存储器所需要的时间,亦称为周期 。周期函数的实质:两个自变量值整体的差等于周期的倍数时,两个自变量值整体的函数值相等。如:f(x+6) =f(x-2)则函数周期为T=8。
(6)高一数学必修四周期T怎么算扩展阅读
周期函数的性质共分以下几个类型:
(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合。
㈦ 周期怎么算数学公式是什么
f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。
sinx的函数周期公式T=2π,sinx是正弦函数,周期是2π
cosx的函数周期公式T=2π,cosx是余弦函数,周期2π。
tanx和 cotx 的函数周期公式T=π,tanx和 cotx 分别是正切和余切
secx 和cscx 的函数周期公式T=2π,secx 和cscx 是正割和余割。
(7)高一数学必修四周期T怎么算扩展阅读:
y=Asin(wx+b) 周期公式T=2π/w
y=Acos(wx+b) 周期公式T=2π/w
y=Atan(wx+b) 周期公式T=π/w
重要推论:
如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。
如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。
如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b, 0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。
㈧ 高中数学 必修4 T/4是啥意思属于哪块的知识点 有图 求学霸讲解!
T是周期的意思,这是sin函数,一个周期(1个T)就是上下各半圆(如下图)
T/4就是四分之一个周期,即π/2,上题中即为x轴上2个单位长度。
这也就是解法第一步:T/4=3=1=2的由来
不懂可追问
㈨ 周期t公式是什么呢
物理上的周期一般有两个计算公式:
1、T=2πr/v(周期=圆的周长÷线速度)。
2、T=2π/ω(“ω”代表角速度)。
相关介绍:
周期函数是无论任何独立变量上经过一个确定的周期之后数值皆能重复的函数。
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。
事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
周期函数的性质共分以下几个类型:
(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合。
㈩ 周期公式是什么
周期与频率:T=1/f
卫星绕行速度、角速度、周期:V=(GM/r)^1/2;ω=(GM/r3)^1/2;T=2π(r3/GM)^1/2{M:中心天体质量}
具体见图:
完成一次振动所需要的时间,称为振动的周期。
若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。
并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
(10)高一数学必修四周期T怎么算扩展阅读:
周期函数的性质共分以下几个类型:
(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合。
周期函数的判定方法分为以下几步:
(1)判断f(x)的定义域是否有界;
例:f(x)=cosx(≤10)不是周期函数。
(2)根据定义讨论函数的周期性可知非零实数T在关系式f(x+T)= f(x)中是与x无关的,故讨论时可通过解关于T的方程f(x+T)- f(x)=0,若能解出与x无关的非零常数T便可断定函数f(x)是周期函数,若这样的T不存在则f(x)为非周期函数。
例:f(x)=cosx^2 是非周期函数。
(3)一般用反证法证明。(若f(x)是周期函数,推出矛盾,从而得出f(x)是非周期函数)。
例:证f(x)=ax+b(a≠0)是非周期函数。
证:假设f(x)=ax+b是周期函数,则存在T(≠0),使之成立 ,a(x+T)+b=ax+b ax+aT-ax=0,aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(x)是非周期函数。
例:证f(x)= ax+b是非周期函数。
证:假设f(x)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(x),当x=0时,f(x)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(x)与f(x+T)= f(x)矛盾,∴f(x)是非周期函数。