导航:首页 > 数字科学 > 数学思维有哪些

数学思维有哪些

发布时间:2022-01-29 09:02:40

① 数学思维十种思维方式是什么

数学思维十种思维方式:

1、对照法

根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

2、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。

3、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

4、分类法

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

5、分析法

把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的种思维方法叫做分析法。

6、综合法

把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。

7、方程法

用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。

方程法最大的特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。

8、参数法

用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的-种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。

9、排除法

排除对立的结果叫做排除法。

排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。

这是一种不可缺少的形式思维方法。

10、特例法

对于涉及一般性结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。

特例法的逻辑原理是:事物的一.般性存在于特殊性之中。

② 小学中数学思维有哪些

罗博深小学数学青少年数学思维分级课程

链接:

提取码: sgsg 复制这段内容后打开网络网盘手机App,操作更方便哦

若资源有问题欢迎追问~

③ 数学思想有哪些

常用的数学思想(数学中的四大思想)

  1. 函数与方程的思想 用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去。

  2. 数形结合思想 在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形”在一定条件下可以相互转化、相互渗透。

  3. 分类讨论思想 在数学中,我们常常需要根据研究对象性质的差异。分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略,引起分类讨论的因素较多,归纳起来主要有以下几个方面:
    (1)由数学概念、性质、定理、公式的限制条件引起的讨论;
    (2)由数学变形所需要的限制条件所引起的分类讨论;
    (3)由于图形的不确定性引起的讨论;
    (4)由于题目含有字母而引起的讨论。分类讨论的解题步骤一般是:(1)确定讨论的对象以及被讨论对象的全体;(2)合理分类,统一标准,做到既无遗漏又无重复;(3)逐步讨论,分级进行;(4)归纳总结作出整个题目的结论。

  4. 等价转化思想 等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的形式,或利用互为逆否命题的等价关系来实现。常用的转化策略有:已知与未知的转化;正向与反向的转化;数与形的转化;一般于特殊的转化;复杂与简单的转化。

④ 初中必备的数学思维有哪些

初中数学教材中体现出的基本数学思想
数学思想方法是数学学科的精髓,是数学素养的重要内容之一,只有充分掌握领会,才能用效地应用知识,形成能力。那么,什么是数学思想呢?数学思想是指现实世界的空间形式和数量关系不反映到人的意识之中,经过思维活动而产生结果,是对数学事实与理论的本质认识。
初中数学整套教材涉及的数学思想三十多种,这里就几种主要的数学思想作一总结。
一、用字母表示数的思想,这是基本的数学思想之一
在代数第一册第一章“代数初步知识”中,主要体现了这种思想。例如:
设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的1/3与乙数的1/2差:1/3a-1/2b
二、数形结合的思想
“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。实中数学教材中下列内容体现了这种思想。
1、数轴上的点与实数的一一对应的关系。
2、平面上的点与有序实数对的一一对应的关系。
3、函数式与图像之间的关系。
4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。
5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。6、“圆”这一章中,贺的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。
7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。
三、转化思想
在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,它是数学基本思想方法之一。下列内容体现了这种思想:
1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。
2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。
3、“圆”这一章中,证明圆周角定理进所做的分析:证明弦切角定理的思路:求两圆的切线长的问题。这些转化都是通过辅助线来完成的。
4、把三角形或多边形中的某种线段或面积问题化为相似比问题来解决。
四、分类思想
集合的分类,有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关生活经验等都是通过分类讨论的。
五、特殊与一般化思想
1.“圆”这一章中,证明圆周角定理和弦切角定理时用的是特殊到一般的方法,而相交弦定理及其推论则是一般到特殊的思想运用。
2.“整式乘除”这一章,首先人数和的运算特例中,抽象概括出幂的一般运算性质。例:103 ×103 =(10×10×10)(10×10)=10×10×10×10=105 =103 + 2
a3 ??a3 =a3 + 2 am ??an am + n
乘法公式的推导则是采用一般到特殊的推导过程。
六、类比思想
1. 不等式的性质,一元一次不等式的解法等内容时多采取与等式的性质,一无一次方和的解法等做类比。
2. 通过有理数的相反数、绝对值、运算律等得到实灵敏的相反数、绝对值、运算律等知识。
3.
在二次根式加减的运算中,指出“合并同类二次根式与合并同类项”类似。因此,二次根式的加减可以对比整式的加减进行。
4.
“角的度量、角的比较大小、角的和、差及平他线”,可与线段的相关知识进行类比;度、分、秒的运算可与时、分、秒的运算进行类比。
5. 相似多边形的性质和相似三角形的性质类比。
七、数式通性
用数的运算所具有的性质,去控索式的同类运算是否也具有这样的性质,如具有,叫数式通性,整式的乘除这一章中,是由数的性质推知式的性质的;由数的国减推知式的加减的。
八、同类合并思想
这一思想在“整式的加减”这一章中的具体体现是合并同类项。“根式”这一章中的合并同类根式。
九、无逼近思想
在无限不循环小数以及用有理数逼近表示无理数时,体现了无限逼近的思想。
十、对称变换思想


根式乘法、根式除法、√a2 =a(a=0)等内容中,多次运用等价转化、对称变化,反用公式的

⑤ 数学思维包括哪些方面

优质解答
思维是人脑对事物本质和事物之间规律性关系概括的间接的反映.思维是认知的核心成分,思维的发展水平决定着整个知识系统的结构和功能.因此,开发高中学生的思维潜能,提高思维品质,具有十分重大的意义.
思维品质主要包括思维的灵活性、广阔性、敏捷供、深刻性、独创性和批判性等几个方面.思维的灵活性是建立在思维广阔性和深刻性的基础上,并为思维敏捷性、独创性和批判性提供保证的良好品质.在人们的工作、生活中,照章办事易,开拓创新难,难就难在缺乏灵活的思维.所以,思维灵活性的培养显得尤为重要.
数学思维是人脑和数学对象交互作用并按一般思维规律认识数学规律的思维过程.其表现是学生从原有的认知结构出发,通过观察、类比、联想、猜想等一系列数学思维活动,立体式地展示问题、提出过程,在温故知新的联想过程中产生强烈的求知欲,尽可能地参与概念的形成和结论的发展过程,并掌握观察、实验、归纳、演绎、类比、联想、一般化与特殊化等思考问题的方法.

⑥ 数学思维除了逻辑思维还有哪些

我个人认为还需:立体思维,要有立体建模感,理解立体几何中数学原理;惯性思维,在数学里很多公式可以套用,很多数字组合具有惯性,需要数学者有一定的惯性思维;创新思维,突破陈规,另寻它路是数学者必备的素质之一。

⑦ 数学思考包括哪些内容

数学思考包括的内容:
1、建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维和抽象思维。
2、体会统计方法的意义,发展数据分析观念,感受随机现象。
3、在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法。
4、学会独立思考,体会数学的基本思想和思维方式。

⑧ 数学思维都包括哪些思维 这些思维在生活学习中有什么用

有反证法,排除法,推理,还有建模的思维。这些思维用来更好的处理事务,数学思维强的人在加油站加油时会选择每次买固定价钱的油而不是买某升的油(算数平均数大于几何平均数),再有旅游时如何安排行程,花最少的钱,玩最多的景点(需要建模)等等。。

⑨ 小学数学中有哪些思维能力

一)从数学的特点看:数学具有抽象性和逻辑严密性。数学本身是由许多判断组成的确定体系。这些判断都是由数学术语和逻辑术语以及相应的符号所表示的语句来表达的,并且借助逻辑推理由一些判断形成新的判断。而这些判断的总和就构成了数学这门科学。小学数学内容虽然比较简单,也没有严格的推理论证,但都是经过人们抽象、概括、判断、推理、论证得出的真正的科学结论,只是不给学生进行严密的合乎逻辑的论证。即使这样,一时一刻也离不开判断、推理。这就为培养学生的逻辑思维提供了十分有利的条件。
(二)从小学生的思维特点看:小学生正处在从具体形象思维向抽象逻辑思维过渡的阶段。特别是中、高年级,学生的抽象思维发生了“飞跃”或“质变”。具体地说,10—11岁学生开始能逐步分出概念的本质特征,能初步掌握比较科学的定义,能领会概念之间的逻辑关系,也能独立进行一些简单的逻辑分析,并进行间接的推理(即由几个判断推出新的判断)。因此可以说,这一阶段正是发展学生形式逻辑思维的有利时期。
由此可以看出,小学数学教学大纲中提出培养学生初步的逻辑思维能力,既符合数学学科的特点,又符合小学生的年龄特点。

⑩ 什么是数学思维

数学思维就是数学地思考问题和解决问题的思维活动形式。数学思维教学,是老师在教学活动中,引导学生根据数学素材进行具体化的数学构思,形成数学运算,也就是我们常说的“数感”,是动态的数学活动。数学思维教程即《乐知数学》是优秀教育专家潜心研究并经过大量的测试和实践,为了充分训练儿童的个性化思维能力而推出的系列课程。

阅读全文

与数学思维有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:700
乙酸乙酯化学式怎么算 浏览:1369
沈阳初中的数学是什么版本的 浏览:1315
华为手机家人共享如何查看地理位置 浏览:1007
一氧化碳还原氧化铝化学方程式怎么配平 浏览:845
数学c什么意思是什么意思是什么 浏览:1366
中考初中地理如何补 浏览:1256
360浏览器历史在哪里下载迅雷下载 浏览:668
数学奥数卡怎么办 浏览:1346
如何回答地理是什么 浏览:987
win7如何删除电脑文件浏览历史 浏览:1019
大学物理实验干什么用的到 浏览:1445
二年级上册数学框框怎么填 浏览:1657
西安瑞禧生物科技有限公司怎么样 浏览:818
武大的分析化学怎么样 浏览:1209
ige电化学发光偏高怎么办 浏览:1298
学而思初中英语和语文怎么样 浏览:1603
下列哪个水飞蓟素化学结构 浏览:1384
化学理学哪些专业好 浏览:1449
数学中的棱的意思是什么 浏览:1015