导航:首页 > 数字科学 > 高中数学好说明什么不同

高中数学好说明什么不同

发布时间:2022-05-29 23:58:08

❶ 请问一下,高中数学和初中数学的本质区别是什么

初中数学和高中数学的不同之处,一是初中初学比起高中数学更加具体、理论性不强,而一上高中,高一代数刚开始就是理论性很强的集合和函数部分,这会使得有一部分初中数学即使学得很好的学生感到难以适应;二是初中数学则相对简单,只要按照一定的步骤就可以解决,而高中数学的思维方法更多的向理论层次跃进,解题过程更加复杂,需要学生多角度多方面进行思考;三是知识内容的含量明显增大,学生在同样单位时间内掌握知识的工作量要明显得多。所以在新的学习中,学生可能会产生如下问题中的几种:

一、有的学生会比较依赖初中学习模式,比如教师会列出中考各类型题目进行反复练习,学生容易养成依赖教师的习惯,甚至是套用题型模式。而到了高中,这种模式一般来说不适合新的学习水平。

二、小学、初中高中知识内容难度逐步增大,有的家长可能对于小学和初中知识还可以对孩子进行辅导,但是高中内容,可能局限于水平无法跟上,或者即便是跟上,但是比起高考的要求有着较大的偏差。

三、思想松懈,尤其是一些初中数学学习得较好,甚至是拔尖的学生,由于前文所说的初中内容较为简单,故而从思想上没有重视,更加没有从学习方法上做出相应的改变,导致直到考试的时候才发现没有跟上。并且对于自己非常自信,总觉得自己初一、初二的时候数学也没有很好,但是到了初三一咬牙,以努力就可以迅速地提高,迷信自己“抱佛脚”的速度和能力,但是在高中学习中,这是很难做到的,原因就是我们前面所说的主要的初中数学学习和高中不同的几点,并且高一是整个高中数学三年的学习中最关键的一年,其涉及的基础性知识太多了,一旦“开窍”较晚,很容易会导致整个高中数学学习跟不上。

虽然初中数学和高中数学有着这样大的不同,但是对于即将到来的高中数学也不需要产生多大的恐惧感。因为初中数学的学习与高中数学的教学还是从本质上有着内在的必然联系的。高中数学是以初中数学为基础的,学生学习数学的兴趣也是从小学到初中一步一步培养出来的。高中数学的新知识的引入必然都不是随随便便,凭空出现的,都是在初中数学的基础之上发展而来,这就要求我们在学习的时候学习高中课程的时候,需要注意把握初中和高中的异同之处、探寻思维上的层进关系。从内在联系上领会到了知识的“为何而来”、“从何而来”、“是什么”和“能干什么”,真正读懂初、高中课程标准和教材内容,就能够从全局上把握初、高中数学知识的体系,全盘梳理初、高中教材内容衔接的知识点,并且在这些知识点上适当拓展,补充间断点,使初、高中数学知识有机地结合起来,成为一体。

❷ 高中数学与大学数学有什么不同具体体现在哪些方面

大学数学和高中数学有什么区别,区别在于大学数学属于高等数学,就是高等级别的数学,而高中数学属于中等数学,就是中等级别的数学,如果从等级上来说,大学数学等级高于高中数学,级别更高,内容更广,这就好比驾驶证,同样是客车驾驶证,a1驾驶证的等级就高于b1驾驶证,a1驾照可以开大客,而b1驾照只能开中小型客车。

❸ 高中数学与初中数学的区别

和初中数学相比,高中数学的内容多,抽象性、理论性强,因为不少同学进入高中之后很不适应,特别是高一年级,进校后,代数里首先遇到的是理论性很强的函数,再加上立体几何,空间概念、空间想象能力又不可能一下子就建立起来,这就使一些初中数学学得还不错的同学不能很快地适应而感到困难,以下就怎样学好高中数学谈几点意见和建议。
一、首先要改变观念。
初中阶段,特别是初中三年级,通过大量的练习,可使你的成绩有明显的提高,这是因为初中数学知识相对比较浅显,更易于掌握,通过反复练习,提高了熟练程度,即可提高成绩,既使是这样,对有些问题理解得不够深刻甚至是不理解的。例如在初中问|a|=2时,a等于什么,在中考中错的人极少,然而进入高中后,老师问,如果|a|=2,且a<0,那么a等于什么,既使是重点学校的学生也会有一些同学毫不思索地回答:a=2。就是以说明了这个问题。
高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究。
二、提高听课的效率是关键。
学生学习期间,在课堂的时间占了一大部分。因此听课的效率如何,决定着学习的基本状况,提高听课效率应注意以下几个方面:
1、课前预习能提高听课的针对性。
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。
2、听课过程中的科学。
首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、打牌、激烈争论等。以免上课后还喘嘘嘘,或不能平静下来。
其次就是听课要全神贯注。
全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。
耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,生动而深刻的接受老师所要表达的思想。
心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。
口到:就是在老师的指导下,主动回答问题或参加讨论。
手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解。
若能做到上述“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。
3、特别注意老师讲课的开头和结尾。
老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
4、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。
此外还要特别注意老师讲课中的提示。
老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。
最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。
三、做好复习和总结工作。
1、做好及时的复习。
课完课的当天,必须做好当天的复习。
复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
2、做好单元复习。
学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。
3、做好单元小结。
单元小结内容应包括以下部分。
(1)本单元(章)的知识网络;
(2)本章的基本思想与方法(应以典型例题形式将其表达出来);
(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
四、关于做练习题量的问题
有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。当然没有一定量(老师布置的作业量)的练习就不能形成技能,也是不行的。
另外,就是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。
最后想说的是:“兴趣”和信心是学好数学的最好的老师。这里说的“兴趣”没有将来去研究数学,做数学家的意思,而主要指的是不烦感,不要当做负担。“伟大的动力产生于伟大的理想”。只要明白学习数学的重要,你就会有无穷的力量,并逐步对数学感到兴趣。有了一定的兴趣,随之信心就会增强,也就不会因为某次考试的成绩不理想而泄气,在不断总结经验和教训的过程中,你的信心就会不断地增强,你也就会越来越认识到“兴趣”和信心是你学习中的老师!

❹ 一般高中数学学得很好的人,他们的智商是不是都很高

这是不确定事件,尤其对于小学生来说。小学阶段的数学,有些孩子成绩虽然很突出,但不一定就是智商高,有些孩子成绩起伏不定,相比较而言,男孩更容易波动些。小学数学内容有一个熟能生巧的过程,有的孩子在家长的有效监管下,很容易脱颖而出,但这不意味着其智商就高。

劈开先天和遗传的因素,其实孩子的智商是可以培养和开发的,但是培养也好开发也好,不能是光光要智商,情商其实比智商更重要,而且情商好的孩子,智商也会相辅相成的得到更好的发展。当孩子的情商智商都好的时候,他才是那么可爱,可以说是人见人爱!

孩子

❺ 高中数学满分的人是不是真的聪明

高中数学满分的人是不是聪明?未必。当年我的大学同学,高考的时候数学是满分的。可是在大学里也不露山不露水。平平淡淡也就过去了。说明一下,我读的是师范。
数学满分,只是说明他在数学上比较专一,能力比较强而已。要知道,在应试教育下,提高分数,数学相对来说还是比较单一的逻辑思维。高中数学的变化,要比物理差多了。跟语文比也差多了。所以,曾经有过一部短戏,那叫做100分,不算满分。因为,练习题毕竟只是练习题。社会才是大难题。

❻ 数学好是说明什么好

数学好说明首先这个人不是非常笨(举个例子,我比较笨,但是高中时数学成绩在上游,一般的难题难不倒),其次这人的基础知识非常扎实,就是说课本上的公里、定理、推理什么的记住了,理解透了,就是基本功比较好,最后,这个人能够灵活运用,如果不是智商超人,那就是学习刻苦,平时常思考,而且做了大量的题,题海战术很有用的。
再者,每个人都是有所长,有所短,很难做到处处比别人好,所以你要做的不是探讨他哪方面一定比你好,而是要认真学,打好基本功,多做各类练习题,经常难为难为自己,成绩就会提高的。

❼ 高中数学到底和初中数学有什么不一样,专家来告诉你

初中数学:代数、几何、概率统计

代数方面主要数、式、方程、函数的学习:有理数无理数的运算,式就包含整式分式;方程主要学习一元一次方程,二元一次方程组,一元二次方程;函数主要学习一次函数二次函数反比例函数;特征是概念众多,需要学习理解每一个概念,函数是重点难点,这部分内容是对接高中函数学习的;

高中数学分支细化,知识量明显增加,就拿函数这一内容来说,它包括函数的定义,基本初等函数(指数函数、对数函数、幂函数、三角函数等),函数的图像变化(平移翻折等)、导数(证明),本身学习上非常抽象,学生学起来就很不习惯,经常是听完课作业不会动手,难度比较大;另外各知识点之间的联系非常紧密,并没有绝对的界限,一个题目同时考察多个知识点的情况很常见,若学生任一知识点有漏洞就可能导致题目错误;另外就是题型的变化特别大,就算是函数这一个内容,它的考察方式就有无数种.这就是高中数学的难点所在,知识量大,题量大,难度大.

❽ 高中数学的特点

高中数学怎么学?高中数学难学吗?

数学这个科目,不管是对于文科学生还是对于理科学生.都是比较重要的,因为他是三大主课之一,它占的分值比较大.要是数学学不好,你可能会影响到物理化学的学习,因为那些学科都是要通过计算.然而,这些计算也都是在数学里面.高中数学怎么学?有哪些好的方法?

老师让孩子上黑板做题

数学担负着培养孩子的运算能力,还有孩子应用知识的能力.高中数学怎样学?还是要看学生对数学的理解程度.学生要有自己的学习方法,你不光要掌握老师上课的内容,在下课之后还要及时巩固,加深.

❾ 请问学习高中数学有什么用,对人今后的益处是什么

数学与我们的生活

史克礼

各位领导,各位老师:大家好!

今天很高兴有这样的机会和大家进行交流。我交流的题目是:数学与我们的生活。首先我说明:数学虽是我的专业,但我的数学知识非常非常有限,只能参考大量的资料,所以难免有“拿来我用”的嫌疑。不妥指出,请指正。今天的报告如果对大家有一点点用处,我就感到很欣慰了。

我的报告分为三个部分:一是数学到底有没有用?二是数学有什么用处?三是数学意识与数学思维。

一、数学到底有没有用

我们知道,大多数人在经历义务教育时读了9年数学,高中毕业时就读了12 年数学。在大学里,无论是学理工类还是经济管理,都要学习数学。所以每个人花在学习数学上的时间最长。现在我们回过头来想一想,我们学到的数学知识是否有用?数学对我们有什么帮助?在日常生活中我们有没有用到数学?我感觉好像不如其他基础课程那么明显。事实上,我们学习的数学知识还是300年前或更早的一些知识,对于近代数学我们不是很了解。比如,媒体上讲歌德巴赫猜想,好像歌德巴赫猜想就是数学,其实不是这样。不仅一般人不了解,就是数学的专家对隔行的数学也不是很了解。这种情况恰好与其他的科学形成了显明的对照,而且这种对照是非常明显的。因为即使老百姓,只要稍微注意一点科学或技术的发展,就知道现在的微机、网络。网络的普及只有几年的时间。再说最近同样普及的东西----激光,1960年开始有第一台激光器。还有基因组计划是在20世纪80年代开始的,这个一般了解科学的人都知道。克隆当然是家喻户晓了,1997年开始的;干细胞,1998年才有;纳米技术,也是90年代才有。可是你要问数学有哪些成就,在90年代有什么成就?不仅大多数普通人不知道,就连数学家也不知道。换句话说,20世纪有哪些重要的数学家?也不知道。我就知道华罗庚、苏步青、陈景润、陈省身和美籍华人丘成桐。对于世界数学家就知道的更少。所以,数学虽然经过了如此费劲的教育,但是我们自己的知识和在日常生活中的应用却非常之少。这是一个矛盾,我们该如何理解这个问题?在讲数学和日常生活之前,我首先要谈谈数学现在到底有没有用?

首先我们要有一个概念:现代数学非常重要,而且对于现在的科学技术起了非常重要的作用。只不过数学是一个幕后英雄!

我们看看20世纪一些重要成就。

数学成就首先是数学家的成就,20世纪最伟大的数学家之一就是诺依曼。虽然现在计算机已换了好几代,但它的程序设计的思想确实是诺依曼提出的,所以人们常称诺依曼是“电子计算机之父”。而且现在还说诺依曼型计算机,想必大家还是知道他的名字的。诺依曼是一个很伟大的数学家,计算机只是他的成就的十分之一。它的成就中很重要的一个是对策论。对策论的应用现在已经非常广泛,而且好多经济学家由于对策论方面的成就拿了诺贝尔奖。像诺依曼这样的数学家,能提出计算机设计思想中最基本的东西,而且至今没有太多的改进。虽然工程技术人员、物理学家在计算的发展方面做出了不可低估的贡献,但作为数学家的诺依曼却首先提出了整个思想。

第二个例子,影响20世纪最重要的一件事情是核武器。最初,美国在研制原子弹和氢弹时,当然是物理学家、化学家和许多其他重要的科学家作主角。但是像制造原子弹这样的技术,没有数学家行不行?光靠试错实验行不行?只要翻开历史,你就会发现数学家在这里面起了很重要的作用。例如,在制造氢弹时,物理学家估计氢弹不可能制造出来,因为氢弹爆炸会使整个地球和地球的大气燃烧,若是整个地球都毁了,氢弹就无法制造出来。这时要验证或否定这个观点是不能靠实验的,在这种完全未知的情况下数学起了作用。经过数学家的计算,断定氢气爆炸不至于引起整个大气的燃烧,可以造出氢弹。而造原子弹时需要做多大体积,选择怎样的爆炸方式,也无法进行实验,需要完全依靠数学的计算。所以,美国在开始造原子弹时,经历了不能做实验,只能靠数学计算的过程。

第三个例子,经济学现在是一门非常重要的科学,90年代经济上最热门的经济理论叫金融数学。金融数学是关于股票、投资的学科。对于股票的研究正好从100多年前,就是1900年开始。有位叫庞加莱的大数学家是20世纪最了不起的数学家之一,他在100对年前就知道混浊,他是最早提出混浊的人。他有一个学生叫巴谢里埃,在研究股票市场的时候,发现这个股票市场和布朗运动完全一样,而布朗运动就是最典型的随机过程。随机过程理论当然是现在概率论中一个最重要的方面。现在的金融更频繁地运用随机过程理论来研究一些随机问题,设计出来许多所谓的衍生的金融产品。衍生的金融产品目前在国内还没有,但是美国在上世纪70年代就开始交易了。这不是具体的交易股票,而是将股票的指数、期货或期权进行交易,即交易你的合同。一个合同本身是一张白纸,是你可以购买这个股票的凭据。那么这个合同值多少钱就是数学金融中最重要的问题。对于一个合同、合约、购买权利,你应该如何定价?买一张桌子、椅子你可以定价,可是买一个合同如何定价就要用很多的概率论知识,特别是现在概率论中最新颖的部分----- 随机数学。

另外一个例子是我们常常提到的CT,它现在已经很普及了。CT是透视的一种,它通过每一段切点来合成出一个整体的图像,这是一个很难的数学问题,可是这个数学问题早在1917年就被一个数学家解决了。CT技术实际上是X光技术,他可以把你体内的立体信息检查出来,所以这种检测手段在医学上很重要。现在除了X光技术以外,还有很多很多新的手段,如核磁共振、正电子扫描等等各种各样新的检测手段,这些技术都以数学为基础。通过上面的例子可以说明,数学是一个很开放的领域,它总在不断的进步,而且这种不断的进步形成了一种非常丰富的资源,在某一个适当的时候,就可能从中发掘出很重要的东西。这说明数学走在科学技术发展的前沿。

二、数学有什么用处

对于那些不是真正研究数学的一般人来说,数学到底有什么用处?一方面,我们应当设法利用整个数学资源,在一定向导的带领下到数学领域去转一转,不必知道细节,只要知道数学的大致内容就行了。另一方面,通过数学可以使我们的思想方法有一个进步。例如在日常生活中,如果能运用数学思想方法,就可以向上台阶一样,每往前迈一步就会有许多收获,有时可以避免上当受骗。今年暑假我在兰州,孩子她小舅经常买彩票,他问我能不能想办法知道下次彩票的中奖号码。我的回答是:假如我知道这个号码,我自己就买了,就不告诉你了。所以,懂得数学的人或者说数学家不可能通过想买彩票这样的事情发财。实际上,数学家知道的是一个总体现象,而一般人只关心她自己的个别现象,这两点是非常不同的。彩票太复杂,就好比掷骰子。概率论来自赌博,虽然出身不好,但它却成为很重要的科学。概率论考虑的是所有可能的情形,并不是只考虑赢得情形,这两点是完全不同的。因此概率论所能告诉你的是:掷一个骰子,掷出一点、两点、三点、四点、五点或六点,你不是掷成这个点就是掷成那个点,假如这个骰子是均匀的,那么你掷出每一点的概率都是六分之一,这是一个很简单的概率问题。假定每一个彩票都处于一种等可能性的状态,那这些彩球就完全是决定性的。但事实上,彩票严格地说不是什么概率,因为彩票在发行的时候事先已经把一切都做好了。你去买彩票的时候,中奖机会是多少,也有个客观概率,你可以去算一下。但是,发行彩票的人事先把这笔帐早已经算清楚了,因为彩票就那么多,里面有多少张头等奖、一等奖、二等奖、三等奖等他心里很有数。所以发行彩票的人肯定赚钱,没有赔钱的可能性,最多的就是彩票没有卖出去。但是,如果假定彩票是基本均匀的,那就成为等可能性的。在这种等可能性的情况下,我们可以容易地计算出概率大约是八百多万分之一,这是一个非常小的可能性。有人说,我花了8万怎么也没有中奖?花8万才是百分之零点五的概率,想要必中的话就得花1600万买下所有的号码,数学家只能告诉你这个。

另外一个很有意思的问题是,假设我有一个号码是1234567,这个号码看起来不大可能摇出来,实际上,如果按假定的等可能原理,这个1234567和2441516或别的号码的概率是完全一样的。根据这个原理,你可以设一个号,每次都买这个号,按理说到了一定的时候你就会碰到这个号。但并不是说你第一个回合就能碰到,而是经过800万次后,你就能等到这个概率论中的一个随机过程。所以数学家只能告诉你这个或那个可能性有多大,而不能告诉你一个中奖号码。因为这只是汪洋大海中的一种,这就是数学家的思想方法。

再说一个例子。从前一个阿拉伯的国王有一个宰相,这个宰相立了大功,国王问他需要什么赏赐。宰相说,你给我一个棋盘(8×8的国际象棋棋盘),在第一个格子里放一粒米,在第二个格子里放两粒米,在第三个格子里放四粒米,在第四个格子里放八粒米,每一个格子里的米粒数是前一个格子米粒数的二倍,那么第五个格子里就放了十六粒米,如此放下去,到了最后一个格子当然就是2的63次方粒米。国王说那简单,我答应你这个条件。事实上,这棋盘上的粒米就是把这个国家的所有粮食都放进去也不够,因为这是一个指数增长问题。通过计算这些米立刻把地球表面覆盖3厘米厚,国王当然做不到。而传销的道理和给棋盘中放米的道理完全一样。为方便说明,假设一个人发展10个人,那第一个人是开始做传销的人,是10的零次方,一个人发展10 个人就是10 的一次方,可10个人再发展10 个人就是10 的二次方,当发展到10 的五层就是10 的5次方——10万人,10 的6次方就是100万人。这样要在一个局限的范围内,到了四五层就无法传下去,因为按照指数增长到一定程度就没有再多的人让你去传了。假如到了第8层那就是一亿人,这根本不可能实现。指数增长和一个一个增长不一样,一个一个增长是等差级数,而指数增长是如此快,以至于你不可想象。这就是为什么好多人传销上当受骗的原因。因为到了一定的级就无法传下去,只能往上传,往上传人家又不干,那你就只能往下传,可是已经没人可传了。既然利润都给了上头这个人,其他人就只能倾家荡产。这些在日常生活中碰到的实例并不要求你学什么数学理论,只要有一个数学的思维方式就行了。

还有,我们现在买房买车时搞的按揭。按揭贷款到底合算不合算?这是一个消费行为的准则问题,人和人之间的差别会很大。但是说到底就是一个观念。对任何人来说,钱都是有时间价值的,不同时间钱的价值不同。比如买房子,年轻人买房子可能没有什么顾虑,因为他可以贷款30年,负担比较轻,而且年轻人的志向很大,想将来工资会越涨越高,可能赚大钱,所以慢慢还,心理上没有什么压力。但是年纪比较大了,到了四五十岁,甚至接近六十岁了,要贷款买房子,一方面银行不贷给你了,银行贷款的年龄不超过65岁,65岁以后就不能贷给你了;另一方面,你的年纪大了,自己也得考虑马上就退休了,退休后工资就固定了,那你就没办法还贷款。所以每个人在考虑问题时都会考虑到时间对自己的影响。也就是说,你今天的钱和将来的钱进行比较,每个人都会考虑它的价值——时间价值。虽然一般人不会像我们学数学的人拿计算机好好算算,只是在心里估计一下,但实际上每个人在算的时候都把将来的钱和现在的钱进行比较。比如有些很有钱的人,像有些老总们,他们即使有钱,也愿意去贷款。当他买房子的时候,明明他的存款一次就可以把房子买下来,但他也愿意搞商业贷款。因为他有一个企业需要投资,虽然他可以向银行去借钱,但银行的那个贷款利率比住房贷款利率高,这个当然不合算。

数学最重要的一点就是它是精密科学。这要求必须清楚概念的含义。在广告中最常见的是,本产品高科技含量百分之五十或百分之五十五,更有甚者给你个带小数点的百分之五十五点九八。可是,首先什么叫高科技含量不知道;也不知道百分之五十五点九八以外的部分叫什么,是低科技含量吗?这种说法就是迎合那种一听高科技就眼睛一亮的人。此外,对数字特别迷信也不可取。比如14.56好像精确的不得了,那一定非常可靠,这完全是谎话。有许多时候只相信数字还不如没有数字,因为有许多时候有这个数和没有这个数效果完全一样,根本就没有用,那只是用来欺骗大众的手段。还有一个常见的说法,以前是讲祖传秘方,药到病除,一针就灵诸如此类的话,现在当然比较高级了,用到数学的概念:治愈率、有效率是百分之五十七点八、百分之九十八点九八。这个数字是怎么来的你可能不知道,如果就两个人,一个治好了一个治坏了,就说有效率是百分之五十,这样行吗?况且治好了的人是靠这个药治好的还是自然痊愈的,你都不知道,你就可能听信这个百分之五十!或者说这药对两个人都有效,有效率就成了百分之一百。其实,这个所谓的百分数要看取样在什么集合内,并且统计上还有很多规则,不是随便说就行了。所以在这些地方不要精确的语言,数学家会思考这句话到底是什么意思,这个数字是怎么来的,而这正是数学家平时训练出来的思想方法。

当然,平时有一些事就需要我们去思考。例如气象台预报中播报下雨的概率是百分之四十、百分之六十、百分之八十,这是说有百分之四十的地方下雨,或者有百分之四十的时间下雨?所以这个下雨概率要想一想。它的意思无非是:百分之五十以下的概率下雨,你出门可以不带雨伞,可百分之八九十要下雨的话,你出门就要带把雨伞,目的是提醒你有没有东西需要遮盖,或不要洗衣服等。这实际上是给我们一个参照的数字,因为有很多原因导致这个数字不太精确,所以只能作为一个参考。在这些问题上,你对于数学要有一个概念,要在每一种情况下进行思考,这是学数学的一个思想。不要看见数就轻信,就以它来指导你的生活,这样做出的决策会是你的生活出现问题。

三、数学意识和数学思维

这样说来,我们怎样通过数学来上一个台阶呢?首先数学帮助你在思维上迈上一个台阶,这个台阶主要有四个方面的要求:第一,要有数量的观念。但这里要避免一个误区,你首先要能确定这个数能反映本质特征,因为有许多数无法进行衡量。像有的人说的道德值多少钱一斤?道德这种事物很难用数来衡量,所以有许多事物是不能用数来衡量的。第二,用数衡量要适可而止。过于准确或小数点后面许多位对于指导生活没有任何意义。例如下雨的概率是百分之三十九点五三,这小数点后面的数字根本没有意义。又比如现在比较预测的经济增长率,今年经济增长率原预测是增长百分之二点一,实际是百分之二点零,或是百分之一点九,两位数就足够了,况且这两位数还不准确,那后面的数字有什么意义?这说明对数量要有一个正确的观念:数学上的每一个想法是如何的出来的,都应该有一个确切的含义。第三,要有一个合理的思维,特别是合乎逻辑的思维。第四,要有一个简便的方法。数学家总是考虑如何把一个复杂的东西整理成一个简单化的东西,这并不是为简单而简单,而是因为人脑要记住的东西实在太多了,不能把一切都记住,所以需要把比较复杂的东西变成简单的东西。大宝广告词说得很有意思:把复杂的东西变成简单的东西——贡献,把简单的东西变成复杂的东西——累得慌。确实,人类现在生活在一个很复杂的世界,要知道有些事是不可能的,但你应该有一个简化事物的方法,在数学中有很多这样的方法。例如我们常说的优化,告诉你应该如何进行投资,就是不要把所有的鸡蛋都放在同一个篮子里——这就是优化。比如你家里的钱,多少存进银行,多少用于投资,投资如何分配等。九月三号早晨,我在中央一台“走进科学”栏目看了一个内容,很受教育。上海的一个出租车司机藏先生每月都能挣八千元以上的工资,而其他的司机最多就是三千来元工资,他被人们称为“神奇的哥”。好多人都不相信,以为他在吹牛!中央电视台记者进行跟踪采访,发现确实是这样。事实上,他在十四年的出租车生涯中,肯动脑子,肯学数学,应用了对策论、概率论、优化论中许多知识。比如早晨出车时间、行车路线、吃饭地点、拉客地点等都提前做了预算。优化的方法在数学上都是能证明的,在概率论或信息论中都有应用。这种简化的方法我们从小学一年级就开始学,一加二,二加三,一直加到一百,如果你一个一个的傻加就是复杂的方法,高斯就能很简单的算出这个结果。想要处理不简单的问题,就要用一个比较简单的方法。但是数学家所提出的数学的简单的方法和我们平时说的简单的方法不一样,数学家把事物分成两个部分,其中之一是繁琐的部分:事物做起来非常繁琐,但很常规,那你就可以机械化的去做。这正是我国数学大师吴文俊先生说的,数学中有很多东西可以机械化,凡是机械化的东西,数学就认为你已知了,就该把你的主要智慧放在最核心、最困难的问题上。凡是已知的,数学家就不再重复了。比如要知道今天下午听报告的人多还是报告厅的座位多,一般人用数数的方法,而数学家就用对应的方法。这个方法很重要,用它很容易比较两个无穷集合元素的多少。

所以,在日常生活中,我们无论做什么事情,在思想方法上向前迈进一步,你就会感到数学还挺有意思的。不一定去念大学,念大学不见得有效。学数学首先要学习他的思想方法,其次是通过交谈或各种情况来利用这个资源,因为现在有许多资源确实存在,只是我们不知道,不会用而已。

我的报告就到这里。谢谢大家!

2006年9月

阅读全文

与高中数学好说明什么不同相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:747
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1423
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1008
武大的分析化学怎么样 浏览:1256
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1667
下列哪个水飞蓟素化学结构 浏览:1431
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1072