㈠ 黎曼猜想,属于数学系的那个专业 主要是数论吗
黎曼猜想,这个未解难题,涉及的数学知识面之广,程度之深,都是深不可测的,并不能笼统的说它属于哪个专业。
从它的提法来看,主要涉及到复变函数的内容,这应该属于分析。
而通过欧拉那个着名的恒等式,黎曼函数又与数论紧密的联系起来。数论与代数几何的关系用现代观点看来是密不可分的。
所以数学各个分支之间的联系是妙不可言的,而通常解决一个数学问题通常需要多个分支多管齐下。
甚至还有说法说,黎曼猜想中的零点分布还与量子力学中随机矩阵的特征值分布关系密切,这又与量子力学挂上钩了~
其实,要解决黎曼猜想到底需要什么数学理论,现在还不得而知,但不能仅仅用某一个分支的数学理论来解决,这一点是肯定的。
希望我的回答能帮到你~
㈡ 数学中黎曼猜想究竟讲的是什么,请通俗易懂的解释
黎曼ζ 函数的所有非平凡零点都位于复平面上 Re(s)=1/2 的直线上。 在黎曼猜想的研究中, 数学家们把复平面上 Re(s)=1/2 的直线称为 critical line。 运用这一术语,黎曼猜想也可以表述为:黎曼ζ 函数的所有非平凡零点都位于 critical line 上。 这就是黎曼猜想的内容, 它是黎曼在 1859 年提出的。 从其表述上看,黎曼猜想似乎是一个纯粹的复变函数命题, 但我们很快将会看到, 它其实却是一曲有关素数分布的神秘乐章。
㈢ 黎曼猜想是什么数学问题
黎曼猜想
黎曼ζ 函数的所有非平凡零点都位于复平面上 Re(s)=1/2 的直线上。 在黎曼猜想的研究中, 数学家们把复平面上 Re(s)=1/2 的直线称为 critical line。 运用这一术语,黎曼猜想也可以表述为:黎曼ζ 函数的所有非平凡零点都位于 critical line 上。 这就是黎曼猜想的内容, 它是黎曼在 1859 年提出的。 从其表述上看,黎曼猜想似乎是一个纯粹的复变函数命题, 但我们很快将会看到, 它其实却是一曲有关素数分布的神秘乐章。
㈣ 什么是黎曼猜想
Riemann 猜想究竟是一个什么样的猜想呢? 在回答这个问题之前我们先得介绍一个函数: Riemann ζ 函数。 这个函数虽然挂着 Riemann 的大名, 其实并不是 Riemann 首先提出的。 但 Riemann 虽然不是这一函数的提出者, 他的工作却大大加深了人们对这一函数的理解, 为其在数学与物理上的广泛应用奠定了基础。 后人为了纪念 Riemann 的卓越贡献, 就用他的名字命名了这一函数。
那么究竟什么是 Riemann ζ 函数呢? Riemann ζ 函数 ζ(s) 是级数表达式 (n 为正整数)
ζ(s) = ∑n n-s (Re(s) > 1)
在复平面上的解析延拓。 之所以要对这一表达式进行解析延拓, 是因为 - 如我们已经注明的 - 这一表达式只适用于复平面上 s 的实部 Re(s) > 1 的区域 (否则级数不收敛)。 Riemann 找到了这一表达式的解析延拓 (当然 Riemann 没有使用 “解析延拓” 这样的现代复变函数论术语)。 运用路径积分, 解析延拓后的 Riemann ζ 函数可以表示为:如右上角图
式中的积分实际是一个环绕正实轴 (即从 +∞ 出发, 沿实轴上方积分至原点附近, 环绕原点积分至实轴下方, 再沿实轴下方积分至 +∞ - 离实轴的距离及环绕原点的半径均趋于 0) 进行的围道积分; 式中的 Γ 函数 Γ(s) 是阶乘函数在复平面上的推广, 对于正整数 s>1: Γ(s)=(s-1)!。 可以证明, 这一积分表达式除了在 s=1 处有一个简单极点外在整个复平面上解析。 这就是 Riemann ζ 函数的完整定义。
编辑本段黎曼猜想
运用右上角图中的积分表达式可以证明, Riemann ζ 函数满足以下代数关系式:
ζ(s) = 2Γ(1-s)(2π)s-1sin(πs/2)ζ(1-s)
从这个关系式中不难发现, Riemann ζ 函数在 s=-2n (n 为正整数) 取值为零 - 因为 sin(πs/2) 为零[注三]。 复平面上的这种使 Riemann ζ 函数取值为零的点被称为 Riemann ζ 函数的零点。 因此 s=-2n (n 为正整数) 是 Riemann ζ 函数的零点。 这些零点分布有序、 性质简单, 被称为 Riemann ζ 函数的平凡零点 (trivial zeros)。 除了这些平凡零点外, Riemann ζ 函数还有许多其它零点, 它们的性质远比那些平凡零点来得复杂, 被称为非平凡零点 (non-trivial zeros) 。 对 Riemann ζ 函数非平凡零点的研究构成了现代数学中最艰深的课题之一。Riemann 猜想就是一个关于这些非平凡零点的猜想。
Riemann 猜想: Riemann ζ 函数的所有非平凡零点都位于复平面上 Re(s)=1/2 的直线上。
这就是 Riemann 猜想的内容, 它是 Riemann 在 1859 年提出的。从其表述上看, Riemann 猜想似乎是一个纯粹的复变函数命题,但它其实却是一曲有关素数分布的神秘乐章。
编辑本段证明黎曼猜想的尝试
黎曼1859年在他的论文 Über die Anzahl der Primzahlen unter einer gegebenen Größe' 中提及了这个着名的猜想,但它并非该论文的中心目的,他也没有试图给出证明。黎曼知道ζ函数的不平凡零点对称地分布在直线s = ½ + it上,以及他知道它所有的不平凡零点一定位于区域0 ≤ Re(s) ≤ 1中。
1896年,雅克·阿达马和 Charles Jean de la Vallée-Poussin 分别独立地证明了在直线Re(s) = 1上没有零点。连同了黎曼对于不非凡零点已经证明了的其他特性,这显示了所有不平凡零点一定处于区域0 < Re(s) < 1上。这是素数定理第一个完整证明中很关键的一步。
1900年,大卫·希尔伯特将黎曼猜想包括在他着名的23条问题中,黎曼猜想与哥德巴赫猜想一起组成了希尔伯特名单上第8号问题。当被问及若他一觉醒来已是五百年后他将做什么时,希尔伯特有名地说过他的第一个问题将是黎曼猜想有否被证明。(Derbyshire 2003:197; Sabbagh 2003:69; Bollobas 1986:16). 黎曼猜想是希尔伯特问题中唯一一个被收入克雷数学研究所的千禧年大奖数学难题的。
1914年,高德菲·哈罗德·哈代证明了有无限个零点在直线Re(s) = ½上。然而仍然有可能有无限个不平凡零点位于其它地方(而且有可能是最主要的零点)。后来哈代与约翰·恩瑟·李特尔伍德在1921年及塞尔伯格在1942年的工作(临界线定理)也就是计算零点在临界线 Re(s) = ½ 上的平均密度。
近几十年的工作集中于清楚的计算大量零点的位置(希望借此能找到一个反例)以及对处于临界线以外零点数目的比例置一上界(希望能把上界降至零)
过去数十年很多数学家队伍声称证明了黎曼猜想,而截至2007年为止有少量的证明还没被验证。但它们都被数学社群所质疑,而专家们多数并不相信它们是正确的。艾希特大学的 Matthew R. Watkins 为这些或严肃或荒唐的声明编辑了一份列表,而一些其它声称的证明可在arXiv数据库中找到。
㈤ 黎曼猜想是什么
黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家波恩哈德·黎曼(1826--1866)于1859年提出。德国数学家希尔伯特列出23个数学问题.其中第8问题中便有黎曼假设。素数在自然数中的分布并没有简单的规律。黎曼发现素数出现的频率与黎曼ζ函数紧密相关。黎曼猜想提出:黎曼ζ函数ζ(s)非平凡零点(在此情况下是指s不为-2、-4、-6等点的值)的实数部份是1/2。即所有非平凡零点都应该位于直线1/2 + ti(“临界线”(critical line))上。t为一实数,而i为虚数的基本单位。至今尚无人给出一个令人信服的关于黎曼猜想的合理证明。
猜想简介
黎曼ζ 函数的所有非平凡零点都位于复平面上 Re(s)=1/2 的直线上。也即方程ζ(s)的非平凡零点的实部都是0.5。 在黎曼猜想的研究中, 数学家们把复平面上 Re(s)=1/2 的直线称为 critical line。运用这一术语,黎曼猜想也可以表述为:黎曼ζ 函数的所有非平凡零点都位于 critical line 上。 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。着名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。
㈥ 黎曼猜想(一):通往质数的征途
出品:科学大院
作者:黄逸文(中国科学院数学与系统科学研究院)
监制:中国科学院计算机网络信息中心 中国科普博览
德国着名数学家希尔伯特(David Hilbert,1862~1943)
1900年,大数学家希尔伯特(Hilbert)在巴黎举办的第二届国际数学家大会上提出了23个数学问题,它为整个二十世纪的数学发展指明了方向。时过境迁,值千禧年之际,美国克雷研究所提出了7个世纪性的数学难题,并慷慨地为每个问题设置了100万美元的奖金。
当我们回顾这次跨越时空的呼应时,却发现有一个共同的问题,并且已经伴随着数学家们走过了沧桑百年的历程,它就是大名鼎鼎的黎曼猜想。
黎曼猜想究竟有何神奇之处,竟让如此多的数学家为此痴迷和魂牵梦绕?在它那里,又藏着怎样惊世骇俗的秘密?破译这样一个难题,真的会给数学和世界带来激动人心的改变吗?
质数探索
在自然数序列中,质数就是那些只能被1和自身整除的整数,比如2,3,5,7,11等等都是质数。4,6,8,9等等都不是质数。由于每个自然数都可以唯一地分解成有限个质数的乘积,因此在某种程度上,质数构成了自然数体系的基石,就好比原子是物质世界的基础一样。
人们对质数的兴趣可以追溯到古希腊时期,彼时欧几里得用反证法证明了自然数中存在着无穷多个质数,但是对质数的分布规律却毫无头绪。随着研究的深入,人们愈发对行踪诡异的质数感到费解。这些特立独行的质数,在自然数的汪洋大海里不时抛头露面后,给千辛万苦抵达这里的人们留下惊叹后,又再次扬长而去。
1737年,瑞士的天才数学家欧拉(Euler)发表了欧拉乘积公式。在这个公式中,如鬼魅随性的质数不再肆意妄为,终于向人们展示出了其循规蹈矩的一面。
沿着欧拉开辟的这一战场,数学王子高斯(Gauss)和另一位数学大师勒让德(Legendre)深入研究了质数的分布规律,终于各自独立提出了石破天惊的质数定理。这一定理给出了质数在整个自然数中的大致分布概率,且和实际计算符合度很高。在和人们玩捉迷藏游戏两千多年后,质数终于露出了其漂亮的狐狸尾巴。
横空出世
虽然符合人们的期待,质数定理所预测的分布规律和实际情况仍然有偏差,且偏差情况时大时小,这一现象引起了黎曼的注意。
其时,年仅33岁的黎曼(Riemann)当选为德国柏林科学院通信院士。出于对柏林科学院所授予的崇高荣誉的回报,同时为了表达自己的感激之情,他将一篇论文献给了柏林科学院,论文的题目就是《论小于已知数的质数的个数》。在这篇文章里,黎曼阐述了质数的精确分布规律。
没有人能预料到,这篇短短8页的论文,蕴含着一代数学大师高屋建瓴的视野和智慧,以至今日,人们仍然为隐匿在其中的奥秘而苦苦思索。
黎曼Zeta函数
黎曼在文章里定义了一个函数,它被后世称为黎曼Zeta函数,Zeta函数是关于s的函数,其具体的定义就是自然数n的负s次方,对n从1到无穷求和。因此,黎曼Zeta函数就是一个无穷级数的求和。然而,遗憾的是,当且仅当复数s的实部大于1时,这个无穷级数的求和才能收敛(收敛在这里指级数的加和总数小于无穷)。
为了研究Zeta函数的性质,黎曼通过围道积分的方式对该函数做了一个解析延拓,将s存在的空间拓展为复数平面。
研究函数的重要性质之一就是对其零点有深刻的认识。零点就是那些使得函数的取值为零的数值集合。比如一元二次方程一般有两个零点,并且有相应的求根公式给出零点的具体表达式。
黎曼对解析延拓后的Zeta函数证明了其具有两类零点。其中一类是某个三角sin函数的周期零点,这被称为平凡零点;另一类是Zeta函数自身的零点,被称为非平凡零点。针对非平凡零点,黎曼提出了三个命题。
第一个命题,黎曼指出了非平凡零点的个数,且十分肯定其分布在实部大于0但是小于1的带状区域上。
第二个命题,黎曼提出所有非平凡零点都几乎全部位于实部等于1/2的直线上。
第三个命题,黎曼用十分谨慎的语气写到:很可能所有非平凡零点都全部位于实部等于1/2的直线上。这条线,从此被称为临界线。而最后这个命题,就是让后世数学家如痴如醉且寝食难安的黎曼猜想。
有人曾经问希尔伯特,如果500年后能重回人间,他最希望了解的事情是什么?希尔伯特回答说:我想知道,黎曼猜想解决了没有。美国数学家蒙哥马利(Montgomery)曾经也表示,如果有魔鬼答应让数学家们用自己的灵魂来换取一个数学命题的证明,多数数学家想要换取的将会是黎曼猜想的证明。黎曼猜想,俨然就是真理的宇宙里,数学家心目中那颗最璀璨的明星。
㈦ 黎曼猜想(Riemann hypothesis)是什么有什么用
黎曼猜想(或称黎曼假设)是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家波恩哈德·黎曼于1859年提出。德国数学家戴维·希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼假设。
作用:对黎曼猜想的研究也促进了相关学科的蓬勃发展。
黎曼猜想起源:
黎曼猜想是波恩哈德·黎曼1859年提出的,这位数学家于1826年出生在当时属于汉诺威王国的名叫布列斯伦茨的小镇。1859年,黎曼被选为了柏林科学院的通信院士。
作为对这一崇高荣誉的回报,他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。这篇只有短短八页的论文就是黎曼猜想的“诞生地”。
㈧ 黎曼猜想是什么数学问题
1850-1860,德国人B.Riemann(Gauss的博士生)使用无穷级数,定义了一个函数(定义域是复平面挖去一些点),我们称之为Riemann Zeta函数。
猜想是说:这个函数取值为0的点都集中在复平面的一条线上(z=x+iy,x=1/2,y任意)。
本猜想并没有什么实际生活中的应用,但是很多数论上的问题,可以归结为它。
㈨ 黎曼假设什么意思
黎曼猜想(或称黎曼假设)是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家波恩哈德·黎曼于1859年提出。德国数学家戴维·希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼假设。
虽然在知名度上,黎曼猜想不及费尔马猜想和哥德巴赫猜想,但它在数学上的重要性要远远超过后两者,是当今数学界最重要的数学难题,当今数学文献中已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。
(9)黎曼猜想需要什么数学知识扩展阅读:
1982年11月苏联数学家马帝叶雪维奇在苏联杂志《Kibernetika》宣布,他利用电脑检验一个与黎曼猜想有关的数学问题,可以证明该问题是正确的,从而反过来可以支持黎曼的猜想很可能是正确的。
1975年美国麻省理工学院的莱文森在他患癌症去世前证明了No(T)>0.3474N(T)。
1980年中国数学家楼世拓、姚琦对莱文森的工作有一点改进,他们证明了No(T)>0.35N(T)。
㈩ 要看懂黎曼猜想,需要哪些数学知识有几本书可以推荐看
群与拓扑学方面的知识;高的学校的读研教材。