‘壹’ 在证明一道数学题时,能不能从结论证明到条件,最后得出的条件与题设相同,从而证明结论是对的
可以的。这种证明方法称为分析法。(可能你还没学)
分析法指从要证的结论出发,逐步寻求使它成立的充分条件,直到归结为判定一个显然成立的条件(已知量、定义、公理、定理、性质、法则等)为止,从而证明论点的正确性、合理性的论证方法。也称为因果分析、逆推证法或执果索因法。
希望采纳
‘贰’ 如何用数学证明以下结论
证明一般来说,必须是从条件往结论证明。也就是说必须是设定条件成立,在此基础上,再证明结论成立。如果假设结论成立,再证明条件成立。那么事实上证明的是原命题的逆命题。而命题关系中,我们知道原命题和逆命题之间,没有真伪关系。证明了逆命题正确,也无法证明原命题正确。但是有时候,我们确实在证明中会出现假设结论的情况。但是这时候我们假设的是结论不成立的情况下,证明条件也不成立。也就是反证法。而这样证明出来的是逆否命题。我们知道原命题和逆否命题的真伪性是相同的。所以证明了逆否命题正确,也就间接的证明了原命题正确。你说的两个例子,如A,如果你先假设∠BCD=90°再证明平行四边形,那么证明的其实是逆命题。而证明逆命题没用。因为就算你证明出来∠BCD=90°的时候这是平行四边形,也无法证明当∠BCD是其他角度的时候,就一定不是平行四边形。也就是说你这样假设,无法说明∠BCD=90°是唯一解。所以必须假设是平行四边形,在此基础上,证明∠BCD=90°。 B,同样应假设是平行四边形的情况下,看看运动了多少时间。否则你无法确定你假设的时间,是唯一解。
‘叁’ 求一个数学结论是否正确,如果正确求证明
用gn(x)表示你那一大串式子
这个题是说gn(x)再在n趋近无穷时收敛,求证收敛于f(x)等于0的那个x点。
这个很好整,设收敛于m,则gn(x)=g(n+1)(x)
所以m等于g(m)
也就是f(m)等于0
至于为什么收敛证起来有点麻烦,手机打字不好打,就不啰嗦了,(如果你这个g(x)说了是单增的函数就用单调连续有界函数必有极限来证,没说的话,证起来又有其他情况比较麻烦)
‘肆’ 数学归纳法为什么是对的如何证明其正确性
从严格的数学角度来说,数学归纳法是一个严格的数学定理,注意不是公理。它是可以在集合论的一系列公理下被证明的。证明如下:
数学归纳法对解题的形式要求严格,数学归纳法解题过程中:
第一步:验证n取第一个自然数时成立。
第二步:假设n=k时成立,然后以验证的条件和假设的条件作为论证的依据进行推导,在接下来的推导过程中不能直接将n=k+1代入假设的原式中去。
最后一步总结表述。
需要强调是数学归纳法的两步都很重要,缺一不可,否则可能得到下面的荒谬证明:
证明1:所有的马都是一种颜色。
首先,第一步,这个命题对n=1时成立,即,只有1匹马时,马的颜色只有一种。
第二步,假设这个命题对n成立,即假设任何n匹马都是一种颜色。那么当我们有n+1匹马时,不妨把它们编好号:
1, 2, 3……n, n+1。
对其中(1、2……n)这些马,由我们的假设可以得到,它们都是同一种颜色。
对(2、3……n、n+1)这些马,我们也可以得到它们是一种颜色。
由于这两组中都有(2、3、……n)这些马,所以可以得到,这n+1种马都是同一种颜色。
这个证明的错误来于推理的第二步:当n=1时,n+1=2,此时马的编号只有1、2,那么分的两组是(1)和(2)——它们没有交集,所以第二步的推论是错误的。数学归纳法第二步要求n→n+1过程对n=1,2,3……的数都成立。
而上面的证明就好比多米诺骨牌的第一块和第二块之间间隔太大,推倒了第一块,但它不会推倒第二块。即使我们知道第二块倒下会推倒第三块等等,但这个过程早已在第一和第二块之间就中断了。
合理性
数学归纳法的原理,通常被规定作为自然数公理(参见皮亚诺公理)。但是在另一些公理的基础上,它可以用一些逻辑方法证明。数学归纳法原理可以由下面的良序性质(最小自然数原理)公理可以推出:
自然数集是良序的。(每个非空的正整数集合都有一个最小的元素)。
比如{1, 2, 3 , 4, 5}这个正整数集合中有最小的数——1。
下面我们将通过这个性质来证明数学归纳法:
对于一个已经完成上述两步证明的数学命题,我们假设它并不是对于所有的正整数都成立。
对于那些不成立的数所构成的集合S,其中必定有一个最小的元素k。(1是不属于集合S的,所以k>1)。
k已经是集合S中的最小元素了,所以k-1是不属于S,这意味着k-1对于命题而言是成立的——既然对于k-1成立,那么也对k也应该成立,这与我们完成的第二步骤矛盾。所以这个完成两个步骤的命题能够对所有n都成立。
注意到有些其它的公理确实是数学归纳法原理的可选的公理化形式。更确切地说,两者是等价的。
以上内容参考网络-数学归纳法
‘伍’ 为什么数学归纳法的结论一定正确
数学归纳法是先猜出一个不完全归纳的结论,然后再来证明这个结论是正确的,
说数学归纳法是合情推理,指的是,
(1)猜想出结论
(2)证明结论
这两部分加起来才是合情推理。
但是如果
抛开证明结论的过程,单说猜想出结论的步骤,
那么,那个仅就那个步骤而言就是不完全归纳
‘陆’ 数学归纳法的正确性证明
用数学归纳法进行证明的步骤:(1)(归纳奠基)证明当 取第一个值 时命题成立;证明了第一步,就获得了递推的基础,但仅靠这一步还不能说明结论的普遍性.在第一步中,考察结论成立的最小正整数就足够了,没有必要再考察几个正整数,即使命题对这几个正整数都成立,也不能保证命题对其他正整数也成立;(2)(归纳递推)假设 时命题成立,证明当 时命题也成立;证明了第二步,就获得了递推的依据,但没有第一步就失去了递推的基础.只有把第一步和第二步结合在一起,才能获得普遍性的结论;(3)下结论:命题对从 开始的所有正整数 都成立。注:(1)用数学归纳法进行证明时,“归纳奠基”和“归纳递推”两个步骤缺一不可;(2)在第二步中,在递推之前, 时结论是否成立是不确定的,因此用假设二字,这一步的实质是证明命题对 的正确性可以传递到 时的情况.有了这一步,联系第一步的结论(命题对 成立),就可以知道命题对 也成立,进而再由第二步可知 即 也成立,…,这样递推下去就可以知道对于所有不小于 的正整数都成立.在这一步中, 时命题成立,可以作为条件加以运用,而 时的情况则有待利用归纳假设、已知的定义、公式、定理加以证明,不能直接将 代入命题.
我认为数学归纳法的正确性证明非常复杂,我都这么辛苦作答了,给个最佳答案把,谢谢啦! 煤矸石粉碎机
‘柒’ 要判断一个数学结论是否正确,必须一步一步有根有据的进行
解:这种方法,在数学中叫做逻辑推理中的演绎推理方法。是数学最重要的方法
‘捌’ 为什么数学归纳法证明结论正确
数学归纳法是先猜出一个不完全归纳的结论,然后再来证明这个结论是正确的,
说数学归纳法是合情推理,指的是,
(1)猜想出结论
(2)证明结论
这两部分加起来才是合情推理。
但是如果
抛开证明结论的过程,单说猜想出结论的步骤,
那么,那个仅就那个步骤而言就是不完全归纳
‘玖’ 如何才能正确的理解数学
数学是逻辑性的科目
先把例题做会,做懂
再做习题,巩固理解
最后大量做题,达到熟练程度
进而,举一反三
‘拾’ 有关数学归纳法的问题. 怎样证明用数学归纳法证明出来的命题就是正确的
数学归纳法
数学归纳法
数学上证明与自然数n有关的命题的一种方法.必须包括两步:(1)验证当n取第一个自然数值n=n1(n1=1,2或其他常数)时,命题正确;(2)假设当n取某一自然数k时命题正确,以此推出当n=k+1时这个命题也正确.从而就可断定命题对于从n1开始的所有自然数都成立.
数学归纳法是一种数学证明方法,典型地用于确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的.有一种用于数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式;这就是着名的结构归纳法.
已知最早的使用数学归纳法的证明出现于 Francesco Maurolico 的 Arithmeticorum libri o (1575年).Maurolico 证明了前 n 个奇数的总和是 n^2.
最简单和常见的数学归纳法证明方法是证明当n属于所有自然数时一个表达式成,这种方法是由下面两步组成:
递推的基础: 证明当n = 1时表达式成立.
递推的依据: 证明如果当n = m时成立,那么当n = m + 1时同样成立.(递推的依据中的“如果”被定义为归纳假设. 不要把整个第二步称为归纳假设.)
这个方法的原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的.如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中.或许想成多米诺效应更容易理解一些;如果你有一排很长的直立着的多米诺骨牌那么如果你可以确定:
第一张骨牌将要倒下.
只要某一个骨牌倒了,与他相临的下一个骨牌也要倒.
那么你就可以推断所有的的骨牌都将要倒.
数学归纳法的原理作为自然数公理,通常是被规定了的(参见皮亚诺公理第五条).但是它可以用一些逻辑方法证明;比如,如果下面的公理:
自然数集是有序的被使用.
注意到有些其他的公理确实的是数学归纳法原理中的二者择一的公式化.更确切地说,两个都是等价的.
用数学归纳法进行证明的步骤:
(1)(归纳奠基)证明当取第一个值时命题成立;证明了第一步,就获得了递推的基础,但仅靠这一步还不能说明结论的普遍性在第一步中,考察结论成立的最小正整数就足够了,没有必要再考察几个正整数,即使命题对这几个正整数都成立,也不能保证命题对其他正整数也成立;
(2)(归纳递推)假设时命题成立,证明当时命题也成立;证明了第二步,就获得了递推的依据,但没有第一步就失去了递推的基础.只有把第一步和第二步结合在一起,才能获得普遍性的结论;
(3)下结论:命题对从开始的所有正整数都成立.
注:
(1)用数学归纳法进行证明时,“归纳奠基”和“归纳递推”两个步骤缺一不可;
(2)在第二步中,在递推之前, 时结论是否成立是不确定的,因此用假设二字,这一步的实质是证明命题对 的正确性可以传递到 时的情况.有了这一步,联系第一步的结论(命题对 成立),就可以知道命题对 也成立,进而再由第二步可知 即 也成立,…,这样递推下去就可以知道对于所有不小于 的正整数都成立.在这一步中, 时命题成立,可以作为条件加以运用,而 时的情况则有待利用归纳假设、已知的定义、公式、定理加以证明,不能直接将 代入命题.
数学归纳法的第二种形式
数学归纳法是一种重要的论证方法.它们通常所说的“数学归纳法”大多是指它的第一种形式而言,本文想从最小数原理出发,对它的第二种形式即第二数学归纳法进行粗略的探讨,旨在加深对数学归纳法的认识.
第二数学归纳法原理是设有一个与自然数n有关的命题,如果:
(1)当n=1回时,命题成立;
(2)假设当n≤k时命题成立,则当n=k+1时,命题也成立.
那么,命题对于一切自然数n来说都成立.
证明:用反证法证明.
假设命题不是对一切自然数都成立.命N表示使命题不成立的自然数所成的集合,显然N非空,于是,由最小数原理N中必有最小数m,那么m≠1,否则将与(1)矛盾.所以m-1是一个自然数.但m是N中的最小数,所以m-1能使命题成立.这就是说,命题对于一切≤m-1自然数都成立,根据(2)可知,m也能使命题成立,这与m是使命题不成立的自然数集N中的最小数矛盾.因此定理获证.
当然,定理2中的(1),也可以换成n等于某一整数k.
对于证明过程的第一个步骤即n=1(或某个整数a)的情形无需多说,只需要用n=1(或某个整数a)直接验证一下,即可断定欲证之命题的真伪.所以关键在于第二个步骤,即由n≤k到n=k+1的验证过程.事实上,我们不难从例1的第二个步骤的论证过程中发现,证明等式在n=k+1时成立是利用了假设条件;等式在n=k及n=k-1时均需成立.同样地,例2也不例外,只是形式的把n=k及n=k-1分别代换成了n=k-1和n=k-2.然而例3就不同了,第二个步骤的论证过程,是把论证命题在n=k+1时的成立问题转化为验证命题在n=k-2+1时的成立问题.换言之,使命题在n=k+1成立的必要条件是命题在n=k-2+1时成立,根据1的取值范围,而命题在n=k-k+1互时成立的实质是命题对一切≤k的自然数n来说都成立.这个条件不是别的,正是第二个步骤中的归纳假设.以上分析表明,假如论证命在n=k+1时的真伪时,必须以n取不大于k的两个或两个以上乃至全部的自然数时命题的真伪为其论证的依据,则一般选用第二数学归纳法进行论证.之所以这样,其根本原则在于第二数学归纳法的归纳假设的要求较之第一数学归纳法更强,不仅要求命题在n-k时成立,而且还要求命题对于一切小于k的自然数来说都成立,反过来,能用第一数学归纳法来论证的数学命题,一定也能用第二数学归纳进行证明,这一点是不难理解的.不过一般说来,没有任何必要这样做.
第二数学归纳法和第一数学归纳法一样,也是数学归纳法的一种表达形式,而且可以证明第二数学归纳法和第一数学归纳法是等价的,之所以采用不同的表达形式,旨在更便于我们应用.