导航:首页 > 数字科学 > 数学课堂如何破除抽象数学

数学课堂如何破除抽象数学

发布时间:2022-05-30 17:46:00

❶ 如何在数学课堂上渗透数学思想

《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》——小学数学教学中渗透数学思想方法思考与实践汇报:兆麟小学农丰小学兰陵小学今天由我们三人汇报的题目是:《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》中国科学院院士、着名数学家张景中曾指出:“小学生学的数学很初等,很简单。但尽管简单,里面却蕴含了一些深刻的数学思想。”数学知识和数学思想方法作为小学数学学习的两条线索,一明一暗,相互支撑,其中数学思想方法提示了数学的本质和发展规律,可以说是数学的精髓。下面我们就谈谈数学思想方法。
一、为什么要在教学中渗透数学思想方法1、基本数学思想方法对学生的发展具有重要意义一位教育学家曾指出:“作为知识的数学出校门不到两年可能就忘了,惟有深深铭记在头脑中的是数学煌精神和数学的思想、研究方法、着眼点等,这些随时随地发生作用使学生终身受益。”数学的思想方法是数学的灵魂和精髓,掌握科学的数学思想方法对提升学生思维品质,对数学学科的后继学习,对其他学得的学习,乃至学生的终身发展有十分重要的意义。在小学数学教学中有意识地渗透一些基本数学思想方法,是增强学生数学观念,形成良好思维素质的关键。不仅能使学生领悟数学的真谛,懂得数学的价值学会数学地思考和解决问题,还可以把知识的学习与能力的培养、智力的发展有机地统一起来。2.渗透基本数学思想方法是落实新课标精神的需求数学课程标准把“四基”:基本知识、基本技能、基本思想、基本活动经验作为目标体系。基本思想是数学学习的目标之一,其重要性不言而喻。新教材是把一些重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、实验等直观手段解决这些问题。从而加深学生对数学概念、公式、定理、定律的理解,提高学生数学能力和思维品质,这是数学教育实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学新课程改革的真正内涵之在。
二、课教材渗透了哪些数学思想小学数学中最上位的思想就是演绎和归纳,是数学教学的主线。还有一些常用的数学思想方法:对应思想、——是指对两个集合元素之间联系的把握。许多数学方法来源于对应思想。比如学生在计算练习时常常有10?20×2?30?40?50?形式出现,这其实就体现了对应的思想。如数轴上的一个点就对应一个数,任何一个数都能在数轴上找到相对应的点,一一对应,呈现完美。符号化思想、——数学发展到今天,已成为一个符号的世界。英国着名数学家素曾说:“什么是数学?数学就是符号加逻辑。”符号化思想即指人们有意识地、普遍地运用符号化的语言去表述研究的对象。符号化思想在整个小学都有较多的渗透,例如:阿拉伯数字:1、2、3、5、6、……+、–、、等运算符号;>、<、=、等表示关系的符号;()、[]等括号;表示数的字母:x、y、z等。字母表示公式:长方形、正方形的面积S=abS=a²字母表示计量单位符号:m\cm\dm\mm\g\km等。集合思想——把一组对象放在一起作为讨论的范围,这就是集合的思想。如:一年级教材在教孩子认数的时候,用一个圈把一些图画圈在里面,这就是孩子最初所接触到集合雏形,也是第一次对小学生渗透这种集合思想。在以后后的教学中慢慢体现并集、差集、空集等思想。极限思想——我国古代就对极限思想的思考,古代杰出的数学家刘徽的“割圆术”就是利用极奶子思想的典型。极限思想是研究变量在无限变化中的变化趋势的思想,运用这一思想,人们的思维可以从有限空间向无限空间,从静态向动态发展,从具体到抽象升华。统计思想——小学数学中的统计思想主要体现在:简单的数据整理和求平均数,简单的统计表和统计图,学生在会整理、制表、作图的同时要能从数据、图表中发现数学问题和数学信息,得出相关的结论。、假设思想——是先对题目标中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。比较思想——是数学教学中常见的思想方法之一,也是促进学生思维发展的手段。
在数学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快找到解题途径。类比思想——是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边行面积公式和三角形面积公式。这种思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
转化思想——是一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到。
分类思想——体现对数学对象的分类及其分类的标准如自然数的分类,三角形按边分按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。
数形结合思想——数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的帮助分析数量关系。代换思想——他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
可逆相思——它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题的方法,有时可以代线段图逆推。如:一辆汽车从甲地开往乙地,第一小时行了1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
化归思想方法——把有可能解决或示解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
变中抓不变的思想方法——在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解,如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
数学模型的思想方法——是对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析等过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
这些数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。下面我们就结合自己对数学思想方法的学习与实践,与大家一起交流。三、让课堂彰显思想的魅力首先说说备课:备课时要研读教材、明确目标、设计预案,充分挖掘数学思想方法如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。
因此我们在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中。其实,每册教材都有数学思想方法的渗透,我们每册选取有代表性的单元。这相对所有教学内容只是冰山一角。为此,我在研读教材时,常常要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等。只有我自己做到胸有成竹,方能给学生渗透相应的数学思想。2上课:创设情境、建立模型、解释应用,渗透数学思想方法数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。
以下面三种课型为例。①新授课:探索知识的发生与形成,渗透数学思想方法如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力。在数学教学中,解题是最基本的活动形式。任何一个问题,从提出直到解决,需要具体的数学知识,但的是依靠数学思想方法。因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法。如我在教学三年级“植树问题”时,首先呈现:在一条100米长的路的一侧,如果两端都种,每2米种一棵,能种几棵?面对这一挑战性的问题,学生纷纷猜测,有的说种50棵,有的说种51棵。到底有几棵?我们能否从“种2、3棵……”出发,先来找一找其中的规律呢?随着问题的抛出,学生陷入了沉思。如果把你们的一只手5指叉开看作5棵树,每两棵树之间就有一个“间隔”(板书),一共有几个间隔?学生若有所思地回答是4个。如果种6棵、7棵……,棵数与间隔的个数有怎样的关系呢?于是我启发学生通过动手摆一摆、画一画、议一议,发现了在两端都种时棵数和间隔数之间的数量关系(棵数=间隔数+1),顺利地解决了上述问题。然后又将问题改为“只种一端、两端不种时分别种几棵”,学生运用同样的方法兴趣盎然地找到了答案。以上问题解决过程给学生传达这样一种策略:当遇到复杂问题时,不妨退到简单问题,然后从简单问题的研究中找到规律,最终来解决复杂问题。通过这样的解题活动,渗透了探索归纳、数学建模的思想方法,使学生感受到思想方法在问题解决中的重要作用。因此,教师对数学问题的设计应从数学思想方法的角度加以考虑,尽量安排一些有助于加深学生对数学思想方法体验的问题,并注意在解决问题之后引导学生进行交流,深化对解题方法的认识。②练习课:经历知识的巩固与应用,渗透数学思想方法数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现。练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力。因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求。例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助图片用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的。又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力。“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法。如我在教学四年级“看谁算得巧”一课时,学生计算“1100÷25”主要采用了以下几种方法:①竖式计算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5④1100÷25=11×(100÷25)⑤1100÷25=1100÷100×4⑥1100÷25=1000÷25+100÷25。在学生陈述了各自的运算依据后,引导学生比较上述方法的异同,结果发现方法①是通法,方法②——⑥是巧法。方法②——⑥虽各有千秋,方法③、④、⑥运用了数的分拆,方法②属等值变换,方法⑤类似于估算中的“补偿”策略,但殊途同归,都是抓住数据特点,运用学过的运算定律、性质转化为容易计算的问题。学生对各种方法的评价与反思,就是去深究方法背后的数学思想,从而获得对数学知识和方法的本质把握。
新课程所倡导的“算法多样化”的教学理念,就是让学生在经历算法多样化的学习过程中,通过对算法的归纳与优化,深究背后的数学思想,最终能灵活运用数学思想方法解决问题,让数学思想方法逐步深入人心,内化为学生的数学素养。③复习课:学会知识的整理与复习,强化数学思想方法复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。数学思想方法随着学生对数学知识的深入理解表现出一定的递进性。在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值。如我在教学五年级“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流。交流之后我又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后(如下图),再次引导学生将这些平面图形面积计算。如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“飞跃”。(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。再如一位六年级老师布置了下面这道课后思考题。在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法?结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。

❷ 小学数学教学中,如何实现具体到抽象的转化 如何将实际问题数学化

二十一世纪是信息飞速发展的时代,如何使现在的学生长大后适应这个社会,如何使他们成为一专多能的有用人才,是现代教师教学中急待钻研的课题,也是我们面临的一个艰巨任务。计算机多媒体技术集文字、图形、图像、声音、动画等功能于一体,不受时空限制,直观、形象、生动,有较强的感染力,对提高学生的学习兴趣,培养学生能力具有其他媒体无法比拟的优越性。近几年来,我校多媒体课件制作组根据现代教育技术发展的需要及本校的实际情况,有的放矢、力所能及的制作多媒体课件进行辅助教学,起到了非常好的教学效果。下面就结合自己在数学课堂教学中采用多媒体进行辅助教学的具体做法浅谈一下计算机多媒体在小学数学教学中的作用。不足之处,敬请各位同行批评指正。

一、创设教学情境,激发学生学习兴趣。 课堂教学成功与否,其主要标志是教学效率的高低,而这又常取决于学生参与教学活动的态度是否积极、主动。儿童有了饱满的学习兴趣,便会对学习产生强烈的需求,积极地投入学习,坚持不懈地与学习中的困难作斗争,不再感到学习是一种负担。运用多媒体技术进行教学,能够创设良好的教学情境,加深学生的感观刺激,牢牢地抓住学生的注意力,激发他们的学习兴趣,在教育教学活动中起到事半功倍的效果。如:教学元角分时,我采用一些学生喜闻乐见的小动物、交通工具、电动玩具来激发他们的求知欲。设计出“买卖情境”让他们在乐中买,乐中认,认中学,学中记,使学生的感性认识和理性认识有机融合,直接经验和间接经验紧密相接。

二、合理运用动画,强化感知,促进知识由具体到抽象的转化 。数学概念舍弃了具体形象的支撑而升华为抽象的文字,学生不易接受,利用传统的教学方法,无法清晰地展示或无法观察到展示过程。而多媒体技术集声、光、色、动等于一体,在教学时,我们可以充分利用多媒体的闪烁、移动、变形等功能,使学生在具体、形象的感知中轻松而高效地理解概念的内涵。在教学两位数减一位的退位减法,23-8,计算机画面上先出现小棒,两捆和三根怎样减去八根,学生可以先自己操作,试一试怎样减,探求方法,然后,按一下正确答案,出现画面:画面上出现两捆零三根小棒和一只小熊,按照学生摆的方法,小熊把一捆小棒拆开,然后和三根小棒和在一起,去掉八根小棒,等于十五根小棒。小熊边做边说,再加上适当音响和音乐。在这个过程,学生可以亲自操作,可以亲眼目睹这个过程,认识两位数减一位数退位减法的关键就是不够减的向前一位借一,在个位上加十再减。在一系列的动态过程中,学生还可以反复操作,抓住重点,从而得到正确结论,学会知识,完成教学任务。这一环节,借助多媒体的色彩、闪烁、声音、动画演示,不仅激起学生的学习兴趣,而且可以帮助学生形成表象,促进知识由具体到抽象的转化,启发思维,提高课堂教学效率。

三、突破教学重难点,提高课堂教学效率 在数学课堂教学时灵活、合理地使用了多媒体辅助课件进行辅助教学,一些教学重点、难点就迎刃而解了。我们知道:《圆的面积》一课把圆转化成长方形是推导圆面积公式的关键,而“化圆为方”是学生理解的难点,利用实物展示等传统教学方法总是不能很好地解决问题,而借助多媒体电脑展示一切难点都简单了! 1、把圆16等份,拼成一个近似的平行四边形,再闪烁拼成的近似平行四边形的上边,突出弯曲感,强调是“近似”的平行四边形。 2、把圆32等份,拼成一个近似的长方形,再闪烁拼成的近似长形的上边与前一条边比较,得出变直了一点。 3、把圆64等份,拼成一个近似的长方形,再闪烁拼成的近似长形的上边与前一条边比较,得出越来越直,拼成图形更接近于长方形。通过以上三个层次的演示,采用逐步逼近的方法,加上教师适时的引导,让学生通过媒体动画拼成过程的演示发现分的份数越多,每份则越细,拼成的图形就越来越接近长方形。在操作中实施转化,既向学生渗透极限思想,又发展了学生的空间观念。这一动态直观的转化过程有效地降低了学生学习的难度。

四、增加课堂容量,及时反馈学生学习信息 要减轻学生的课业负担,就要加大教学密度,提高课堂40分钟的教学效率。多层次、开放性、实践性的练习是学生形成良好数学技能不可或缺的环节。在课堂练习时,教师把数学问题和实际生活紧密联系,通过多媒体直观演示,使学生更深刻清晰地理解题意,并顺利灵活地解题,从而提高学生的解题能力。如在教学《已知一个数的几倍是多少求这个数的应用题》时,课堂练习的时候我设计了这样一组题目:电脑在轻快的乐声中显示色彩亮丽、形象逼真的画面,创设一个小青娃迷路找家的情境。每只青娃身上都有一道题目,每张荷叶上都有一道算式。青娃身上的题目是用哪些荷叶上的算式解答,哪张荷叶就是青娃的家。让学生先同位互相讨论,再提名学生操作鼠标帮青娃找家。这里利用人机交互技术,设置了目标响应功能,如果学生找错了,媒体立即作出反应,找错了,再找一遍。青娃返回原来的位置,如果找对了,即时给予肯定和鼓励。在这里充分发挥多媒体技术的优势,根据儿童特点,创设情境,充分调动学生的学习积极性,提高学生的学习兴趣,使学生在学中玩,玩中学,达到了轻松愉快的巩固新知识的效果。再比如在小括号的教学中,有一道题是判断8+12-5=15与8+(12-5)=15运算顺序是否相同,学生在动手操作之后,判断是或不是,再用多媒体计算机演示CAI软件,一步步引导学生的思维,让学生在一步步的深入、探索、实验、失败或成功中发现规律,这就将视、听、做、思统一了起来,达到学习的最好效果。除此之外,学生可以根据自己的判断,选择学习的方向,根据自己的接受能力,选择学习内容和进度,独立地解决计算机给出的各种问题。由于学生有选择地主动获取知识,对自己感兴趣的问题进行深入探讨,既开发了学生的智力,又发展了学生的个性。

由于问题的结果是开放的,因此我把可能出现的答案均设计成了交互形式,根据学生的回答灵活地作出响应,从而有效地培养了学生的发散思维和创造思维,促进他们积极主动的发展。

总之,在科学技术飞速发展的今天,计算机的作用将越来越大。在课堂教学时运用计算机进行辅助教学能使教学变得直观、生动、提高学习效率。只要我们教师勤于耕耘,不断探索,在充分发挥传统教育媒体越势的同时,力所能及地利用多媒体这一现代化的教学手段,力图营造一种积极愉快而又富有智慧的教学情境,更好地将学生的情感与认知,感受与理解、动手与动脑、学习的主体与教师的主导有机地结合起来,促进学生数学智能整体而和谐的发展。

❸ 如何在小学数学教学中渗透抽象思想

小学数学中的抽象思想通常都蕴含在数学规则、原理及概念的形成中,这一形成过程需要教师以课堂活动的形式呈现给学生。因此,在日常教学中,教师应积极为学生创造或提供参与数学规则、原理及概念探究的机会,并依据抽象思想渗透的需求有目的地安排教学活动,使得学生在亲自参与各种数学规则、原理及概念探究的过程中真切地感知到抽象思想的内容与特点,从而将其内化为自身的一种学习能力。

❹ 如何在小学数学解题中运用抽象思维法

在小学数学解题方法中,运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。

抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。

形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。

小学数学要培养学生初步的抽象思维能力,重点突出在:

(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。

(2)思维方法上,应该学会有条有理,有根有据地思考。

(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。

(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。

1、对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?

对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例2:判断题:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

2、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

例3:计算59×37+12×59+59

59×37+12×59+59

=59×(37+12+1)…………运用乘法分配律

=59×50…………运用加法计算法则

=(60-1)×50…………运用数的组成规则

=60×50-1×50…………运用乘法分配律

=3000-50…………运用乘法计算法则

=2950…………运用减法计算法则

3、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

❺ 如何变抽象为具体,将小学数学知识生活化

一、课题的提出

1,数学是人们生活、劳动和学习必不可少的工具,对数学的认识不仅要从数学本质的观点去领悟,更要从数学活动的亲身实践中去体验。

2,这充分说明了数学来源于生活,又运用于生活,数学与学生的生活经验存在着密切的联系。在数学教学中我发现数学教学总是与生活有所隔离,这样就使学生接触到的数学知识更加抽象,也增加了教学难度。

3,为此,我觉得教师应该在课题研究中应充分挖掘数学知识本身所蕴含的生活性、趣味性,调动学生善于质疑、自主研究,主动寻觅数学与生活之间的密切关系,探索生活材料数学化、数学课堂生活化的教法,使学生轻松愉快地掌握数学。

二、课题研究的目的

1、培养学生积极稳定的学习态度。通过教师在指导学生学习数学知识的同时,有目的地引导学生对该知识点的相关背景从多种渠道中加以发掘,凸现出该知识在社会生活中的历史与现实背景,呈现知识的产生、发展、变化过程,揭示该知识的发展规律和本质,认识对人类社会生活的现实影响和真实意义,从而增强学生深刻理解相关知识点赋予个人的现实意义,促使学生形成端正、稳定的学习态度。

2、加强学生数学生活经验积累,培养学生数学学习主动性的研究通过引导学生从日常所处的校园、家庭、社会等周围生活环境中,有目的地发现和收集与生活密切相关的数学问题,加以认真观察和详细记录,鼓励学生主动以多种途径去寻求问题的情景,并尝试运用数学知识从不同角度加以分析、讨论和解释,引导学生用准确、严格、简练的数学语言或文字表达自己的不同见解,得出不同形式的结论。

3、创设生活化数学教学情景,培养学生数学兴趣的研究,通过教师对学生生活及兴趣的理解,以学生生活经验为依据,对教学内容进行二次加工和整合,重新组织学习材料,使新知识呈现形式贴近学生的生活经验,即教学内容生活化。

❻ 初中如何解数学抽象问题

个人觉得,在初中阶段并未接触抽象的数学问题,平面几何都算是个基础,而代数方面也都是基本知识。一旦进入高中出现立体几何和解析几何后基本才算抽象,同时加入集合,函数单调性,数列,排列组合后,这些才是真正的抽象。

❼ 小学数学教学中如何处理好直观教学和抽象思维的关系

在小学数学这门学科的基础知识中,其概念、运算性质、运算定律和计算法则、公式等都是抽象的结果。直观教学作为一种教学手段,它必须依赖于一定的中介物向学生传递知识信息。由于师生之间传递教学信息的主要媒体不同,直观教学的形式也就不同,其数学思维方法也不相同,但得出的结论或抽象的结果应完全相同。数学教师在教学中一般都比较重视直观教学上升为数学抽象思维,来逐步培养与提高小学生的概括能力,逐步培养和发展他们的逻辑思维能力。
一、把握直观教学与思维发展的方向 1、实物直观与抽象思维
实物直观具有鲜明、生动和真实等特点,容易引起学生的学习兴趣,增强感知的积极性。所以它在小学数学教学中具有广泛的适用性,特别是对数的概念的建立,四则运算意义的理解,时间单位和几何形体特征的认识,以及周长、面积、体积的计算等内容的教学,通常是直接利用实物直观来帮助学生建立知识表象的。如学生通过观察黑板、桌面、书面等表面是长方形的实物面形成长方形的表象,得到长方形的概念。通过对粉笔盒、砖块、包装盒等实物的观察、分析,使学生初步认识长方体和正方体,进而掌握它们的特征……不过实物直观也有其明显的局限性,那就是在某些实物中数学概念的本质属性常常容易被非本质属性所掩盖,学生不易感知对象的本质特征。如学生通过对人民币的观察,可以获得元、角、分这几种人民币的表象,但却容易停留在对人民币画面的认知上而不能很好地知道它们之间的关系。所以,在实施实物直观教学时,运用数学抽象思想方法,采用提示、重点引导等方式突出对象的本质属性,以提高其教学效率。
2、模具直观与抽象思维
模具直观的主要特点是能够突出观察对象的主要部分,更好地反映数学概念的关键特征和数学原理的普遍规律,特别是通过学生的实际操作更有利于发展学生的思维能力。如在认识“三角形的稳定性”时,教师采取先让学生观察四边形的教具,发现四边形的不稳定性。然后去掉其中一根棒,得到三角形的教具,再让学生拉、压,感受到三角形没有变化,从而使学生真正认识到三角形的稳定性,不仅获得了良好的教学效果;而且调动了他们的学习主动性和积极性,培养了他们的动手能力和思维能力。
3、图像直观与抽象思维
在应用题的教学中,常常可以将题目中的条件和问题用线段图表示出来,使量与量之间的关系清晰明了,便于学生理解。如教学四则混合运算和应用题:“小红家买来一袋大米,吃了5/8,还剩15千克,买来大米多少千克”学生只从文字上不易明白15千克与5/8的关系,而用图表示就容易理解15千克与5/8的各自对应关系,列式解答也就容易了。在当前的教学实践中,图像直观采用以投影仪、录像机、计算机为主的电化方式,变静态为动态,效果更好。电化教学不受时间和空间限制,可以在大和小、远和近、快和慢、动和静、整体与部分等方面相互转化,清晰地显示出被观察对象各个部分以及它们之间的联系,帮助学生观察事物的发展变化过程,十分有利于学生理解数学概念和有关规律。这对优化课堂教学,提高教学质量,以及增强学生的学习兴趣、调动其积极性、促使其对数学知识的理解和掌握,都具有重要作用。例如:教学“草地上有8只羊,又来了3只,一共有多少只羊”时,教师用计算机出示“草地上有8只羊”的画面,然后又动态显示“又来了3只羊”。于是很自然地把生活中的实际问题转化为数学问题,并使学生在良好的情境中,集中了注意力,激发了学习兴趣,达到了寓教于乐的效果,从而使学生很轻松地掌握了应用题的结构。
除了上面三种主要直观手段外,语言直观也是十分重要的。教学中,教师使用生动形象富有感染力的语言并借助表情、手势等动作对所学内容作形象化的描述,可以强化观察、分析的关键部分,使学生克服在认知上的困难,帮助他们在大脑中形成有关事物的表象,获得相应的感性认识,进而使感性认识形成理性认识。所以,在教学中,教师的语言对启发学生的思维起着关键性地作用。但是语言直观一般很难孤立地运用,往往是融于其他直观手段之中,相互结合,才能产生良好的教学效果。
总之,概念的建立可通过“实物→表象→概念→形式化”的思维途径来解决;计算法则、公式(包括运算性质、定律)的导出可通过“形的合并抽象为算式→概括为用数学语言表述的法则→法则符号化”的思维途径来解决。
二、充分发挥表象在数学抽象概括中的桥梁作用
表象是指在感觉之后在脑中留下的反映的痕迹。表象和感知都是具体的、直观的反映。表象接近概念,具有一定的抽象性。但又没有抽象概念那样反映事物的本质属性。所以,在概念形成、法则推导的过程中,设法建立一个能突出事物共性的典型表象是形成概念,推导出法则、公式等的关键。所以,要充分发挥表象在数学抽象概括中的作用。比如,三角形的概念就是在学生已有三角形的初步认识和三角形的表象的基础上进行抽象概括得出的。
三、运用直观教学上升为数学抽象思想,培养小学生概括能力时,应特别注意如下几个具体问题: 1、抽象概括要及时。
我们都知道,小学生是以形象思维为主的,因此,在数学概念的建立、法则公式的推导、解答应用题时,要让学生感知充分,在感知的基础上,要特别注意及时进行抽象概括。否则,学生的思维只停留在肤浅的、表面的、支离破碎的现象上,对事物的主要因素认识不深,不能揭示出事物的本质,不能达到让学生从感性认识上升到理性认识的高度。
2、数学的抽象概括要逐步深入,分层次进行,不可操之过急。 对小学生抽象概括能力的培养,一般应遵循从抽取事物形象的外部特征向抽象事物本质特征逐步发展提高。比如,“加法交换律”这一概念的建立,开始时可从具体事物进行抽象:1个气球加2个气球等于2个气球加1个气球,由此得出1+2=2+1,从而导出交换加数的位置和不变的结论,再抽象为字母表示加法交换律a+b=b+a 教学实践使我们深刻地认识到,小学数学教材中的各种数学知识都是采取逐步渗透的办法,由具体到半具体半抽象,再到抽象,逐步发展的。这样,易为小学生所接受并收到良好的效果。

❽ 数学教学中怎样把抽象的知识具体化

数学源于生活,生活中又充满着数学。学生的数学知识与才能,不仅来自于课堂,还来自于现实生活实际。在课堂教学中,把数学和学生的生活实际衔接起来,让数学贴近生活,使学生感到生活中处处有数学,学起来自然、亲切、真实。实现“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。 如何把握数学与生活的衔接,提高教学效果,我在教学中注意从以下几方面入手。
一、 数学语言生活化,理解数学
前苏联数学教育家斯托利亚尔曾说过:数学教学也就是数学语言的教学。在课堂教学的师生交往中,主要是通过言语交流。同一堂课,不同的教师教出来的学生接受程度不一样,主要还是取决于教师的语言素质如何,尤其是在我们数学课堂教学中,要将抽象化的数学使学生形象地接受、理解。一个没有高素质语言艺术的教师是不能胜任的。看似枯燥无味的数学,实则里面蕴藏着生动有趣的东西。鉴于此,教师的数学语言生活化是学生引导理解数学、学习数学的重要手段。教师要结合儿童的认知特点、兴趣爱好、心理特征等个性心理倾向,在不影响知识的前提下,对数学语言进行加工、装饰,使其通俗易懂、富有情趣。
如认识“ <”、“>”,教师可引导学生学习顺口溜:大于号、小于号,两个兄弟一起到,尖角在前是小于,开口在前是大于,两个数字中间站,谁大对谁开口笑。区别这两个符号对学生来说有一定的难度,这个富有童趣的顺口溜可以帮助学生有效的区分。
又如把教学长度单位改成“长长短短”;把教学元、角、分改成“小小售货员”,把比大小说成“排排队”等等,学生对这些生活味十足的课题知识感到非常好奇,感到学习数学很有趣。
二、数学问题生活化,感受数学
新的课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,探索数学规律,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。在教学中我们要善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系--数学无处不在,生活处处有数学。因此,通过学生所了解、熟悉的社会实际问题(如环境问题、治理垃圾问题、旅游问题等等),为学生创设生动活泼的探究知识的情境,从而充分调动学生学习数学知识的积极性,激发学生的探索欲望。
比如:生活中每时每刻都要用到估算,要求学生估算一下每天上学到校需多少时间,以免迟到;或估算一下外出旅游要带多少钱,才够回来等等。在教学中引导学生寻找生活中的数学问题,既可积累数学知识,让学生通过如此切身的问题感受到学数学的价值所在,更是培养学生探索意识和应用意识的最佳途径。
三、数学情境生活化,体验数学
教育心理学的研究表明:学生在没有精神压力,没有心理负担,心情舒畅,情绪饱满的情境下,大脑皮层容易形成兴奋中心,思维最活跃,实践能力最强。在日常的教学中,应该提供这样的思维环境,创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,使学生感觉到在课堂上学习就像在日常生活中遇到了数学问题一样,需要大家一起来实践解决,通过自己的动手操作,集体的共同研究,最终得出学习结论。
如在空间与图形的教学中,要充分利用学生生活中的事物,引导学生探索图形的特征,丰富空间与图形的经验,建立初步的空间观念。教学中可以组织学生分小组到操场上选定一个建筑物,让学生站在不同角度看这个建筑物,体会从不同的角度看同一个物体时,所看到的形状的变化,并用简单的图形画下来。也可让学生在方格纸画出示意图:假设图书馆在学校的正东方向200米处,小红家在学校正北方向500米处,医院在学校的正南方向1000米处,车站在学校的正西方向800米处。学生可以根据这些信息,在方格纸上确定适当的单位距离,标出相对位置后,教师再及时组织引导学生进行交流,逐步发展学生的空间观念。
又如教学“元角分的认识”,组织学生开展一次“我是一位出色的售货员”活动,让他们在逼真的买卖中掌握、消化和应用知识。再如,相遇问题应用题教学,教师采用学生登台表演,情景再现的方法,把抽象的相关的各种数学术语让学生迅速地理解,既活跃了课堂气氛,又高效率地完成了教学任务。
四、数学作业生活化,运用数学
数学来源于生活而最终服务于生活。尤其是小学数学知识 ,在生活中都能找到其原型。把所学的知识应用到生活中,是学习数学的最终目的。由于课堂时间短暂,所以作业成了课堂教学的有益延伸,成了创新的广阔天地。学生适当运用课堂内容的自然延伸,能从广阔的大千世界中学习知识。教师在教学中应努力激发学生运用知识解决问题的欲望,引导学生自觉地应用知识解决生活中相关的问题。
如学习了长度单位,可以测自己和父母的身高,从家到学校的路程;认识了人民币可以用自己零用钱买所需要的东西;学习了统计知识和百分比应用题,可以去统计本校学生人数以及

❾ 谈数学教学中如何处理好直观和抽象的关系

处理好直观教学和抽象思维的关系


所谓抽象思维能力,是指脱离具体形象,运用概念、判断、推理等进行抽象思维的能力。

按抽象思维不同的程度,可分为经验型抽象思维和理论型抽象思维。

在教学中,我们应该着重发展理论型抽象思维,因为只有理论型抽象思维得到充分发展,才能更好地分析和综合各种事物,才有能力去解决问题。

在教学中,可通过实物教具,利用数形结合,以形代数等手段。

❿ 数学课堂如何突破重难点

一、抓住强化感知参与,运用直观的方法突出重点、突破难点
直观教学在小学数学教学中具有重要的地位.鉴于小学生的思维一般地还处在具体形象思维阶段,而在小学数学教学中,他们要接触并必须掌握的数学知识却是抽象的,这就需要在具体与抽象之间架设一座桥梁.直观正是解决从具体到抽象这个矛盾的有效手段.在教学中,教师应多给学生用学具摆一摆、拼一拼、分一分等动手操作的机会,使学生在动手操作中感知新知、获得表象,理解和掌握有关概念的本质特征.如在教学中,可让学生通过动手画、量、折叠、剪拼几何图形,做一些立方体模型,使学生感知几何形体的形成过程、特征和数量关系.如学生在用圆规画圆时,通过固定一点、确定不变距离、旋转一周等操作,对圆心、圆的半径、圆的特征和怎样画圆就会有较深刻的感性认识.
二、抓住数学来源于生活,运用联系生活的方法突出重点、突破难点
现代教育观指出:“数学教学,应从学生已有的知识经验出发,让学生亲身经历参与特定的教学活动,使学生感受数学与日常生活的密切联系,从中获得一些体验,并且通过自主探索、合作交流,将实际问题抽象成数学模型,并对此进行理解和应用.”所以,我们数学应从小学生已有的生活体验出发,从生活中“找”数学素材并多让学生到生活中去“找”数学、“想”数学,使学生真切感受到“生活中处处有数学”.如我们都知道“利息”知识源于生活,在日常生活中应用广泛.我在教学“利息”时,让学生通过5000元存入银行,计算整存整取三年期、整存整取五年期,体会到期后会取得多少利息等.这样从学生的实际出发,在课堂中充分让学生“做主”,引导学生从生活实际中理解了有关利息、利率、本金的含义,体会了数学的真实.只有让数学走进生活,学生才会愿学、乐学,从而激发起学生学数学、用数学的热情.
三、抓住小学生的特点,运用游戏的方法突出重点、突破难点
小学生的特点是好奇好动,对游戏有很大的兴趣.一般情况下,他们的注意只能保持15分钟左右.在教学中,如果组织学生通过灵活多变的游戏活动来学习数学知识,他们就会对数学学习产生浓厚的兴趣,把注意力长时间地稳定在学习对象上来,使教学收到很好的效果,而且课堂气氛妙趣横生,师生情感融为一体.如:学习“倍”的概念时,和学生一起做拍手游戏.教师首先拍2下,然后拍4个2下,让学生回答第二次拍的是第一次的几倍.接着,按要求师生对拍,进而同桌同学互拍.这样的教学过程,学生始终精神集中、情绪高涨.这种简单易行的游戏,深受学生喜爱,从而达到了教学的目的.
四、抓住知识间的异同,运用比较的方法突出重点、突破难点
着名教育家乌申斯基认为:“比较是一切理解和思维的基础,我们正是通过比较来了解世界上的一切的.”小学数学中有许多内容既有联系又有区别,在教学中充分运用比较的方法,有助于突出教学重点、突破教学难点,使学生容易接受新知识,防止知识的混淆,提高辨别能力,从而扎实地掌握数学知识,发展逻辑思维能力.如:课堂教学中,对学生回答问题或板演,有些教师总是想方设法使之不出一点差错,即使是一些容易产生典型错误的稍难问题,教者也有“高招”使学生按教师设计的正确方法去解决,造成上课一听就懂、课后一做就错的不良后果.这样其实是教师对教学难点没吃透、教学中教学难点没突破的反映.教师在教学中,可通过一两个典型的例题,让学生暴露错解,师生共同分析出错误的原因,比较正、误两种解法,从正反两个方面吸取经验教训,使学生真正理解重难点,灵活运用新知.
五、抓住知识间的联系,采用转化的策略突破重点和难点
转化的方法就是利用已有的知识和经验,将复杂的转化为简单的,将未知的转化为已知的,将看来不能解答的转化成能解答的,简单地说就是化未知为已知、化繁为简、化曲为直等.在教学中,教师如能做到“化新为旧”,抓住知识间的“纵横联系”,帮助学生形成知识网络,逐步教给学生一些转化的思考方法,让学生掌握多种转化途径,就能掌握解题策略,提高解题能力.

阅读全文

与数学课堂如何破除抽象数学相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:747
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1423
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1008
武大的分析化学怎么样 浏览:1256
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1667
下列哪个水飞蓟素化学结构 浏览:1431
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1072