❶ 零的历史是怎样的
零的历史:
由于零的概念在欧洲文化中是跟着从印度起源的印度-阿拉伯数字系统而传入的,因此很多人认为零这个数字是印度人在约公元5世纪时发明,实际上很早就有文化懂得零的概念。
古埃及在公元前2千年就有人在记帐时用特别符号来记载零。玛雅文明最早发明0这个数字,比印度人还早一些,比欧洲人还早800年。在1202年时,一个商人写了一本算盘之书。
在东方中由于数学是以运算为主,(西方当时以几何和逻辑为主),由于运算上的需要,自然地引入了0这个数。在中国很早便有0这个数字很多文献都有记载。
在1208年时将印度的阿拉伯数字引入本书,并在开头写了 "印度人的9个数字,加上阿拉伯人发明的0符号便可以写出所有数字" 。
由于一些原因,在初时引入0这个符号到西方时,曾经引起西方人的困惑,因当时西方认为所有数都是可数,而且0这个数字会使很多算式。
逻辑不能成立(如除0), 甚至认为是魔鬼数字,而被禁用直至约公元15,16世纪0和负数才逐渐给西方人所认同,才使西方数学有快速发展。
(1)欧洲数学家为什么接受0扩展阅读:
在古代印度,进行城市建设时需要设计和规划,进行祭祀时需要计算日月星辰的运行,于是,数学计算就产生了。大约在公元前3000多年,印度河流域居民的数字就比较先进。
而且采用了十进位的计算方法。到公元前三世纪,印度出现了整套的数字,但在各地区的写法并不完全一致,其中最有代表性的是婆罗门式:这一组数字在当时是比较常用的。
它的特点是从“1”到“9”每个数都有专字。现代数字就是由这一组数字演化而来。在这一组数字中,还没有出现“0”(零)的符号。
“0”这个数字是到了笈多王朝(公元320—550年)时期才出现的。公元四世纪完成的数学着作《太阳手册》中,已使用“0”的符号,当时只是实心小圆点“·”。
后来,小圆点演化成为小圆圈“0”。这样,一套从“1”到“0”的数字就趋于完善了。这是古代印度人民对世界文化的巨大贡献。
1202年,意大利出版了一本重要的数学书籍《计算之书》,书中广泛使用了由阿拉伯人改进的印度数字,它标志着新数字在欧洲使用的开始。这本书共分十五章。
在第一章开头就写道:“印度的九个数目字是‘9、8、7、6、5、4、3、2、1’,用这九个数字以及阿拉伯人叫做‘零’的记号‘0’,任何数都可以表示出来。”
随着岁月的推移,到十四世纪,中国印刷术传到欧洲,更加速了印度数字在欧洲的推广与应用。印度数字逐渐为全欧洲人所采用。
西方人接受了经阿拉伯传来的印度数字,但他们当时忽视了古代印度人,而只认为是阿拉伯人的功绩,因而称其为阿拉伯数字,这个错误的称呼一直流传至今。
❷ “0”的故事是什么
小朋友,你们都知道,1、2、3、4、5、6、7、8、9、0这10个阿拉伯数字是数学的最基本的符号,有了它们,我们才能进行数学运算。而“0”,则是其中不可缺少的。有了“0”,我们在记数、读数等方面,有很多方便。不过,你们也许不知道,“0”这个数字在当初传入欧洲的时候,还发生过一段挺让人气愤的故事呢。
大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家作了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权力更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹住,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇命令禁止了。
虽然“0”被禁止使用,罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”作出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
❸ "0"的由来及其代表的哲学意义
最初,阿拉伯数字中没有“0”,经过1000多年后才产生了“0”。没有“0”这个数字时,为了表示某一位上一个计数单位也没有,就“不写”或“空写”。后来,印度人在数字中间加上小点“.”表示空位,又过了很长时间,小点便改成“0”。我国古代用算筹记数,也采取空位表示零。古书中缺字常用“□”表示,数字里的空位也用“□”表示,以后由于书写时常用行书,“□”也就容易写成圆圈了,用“○”表示零。
从历史上看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。 目前,国外的数学界大部分都规定0是自然数。为了国际交流的方便,1993年颁布的《中华人民共和国国家标准》(GB 3100~3102-93)《量和单位》(11-2.9)第311页,规定自然数包括0。所以在近几年进行的中小学数学教材修订中,我们的教材研究编写人员根据上述国家标准进行了修改。即一个物体也没有,用0表示。0也是自然数。 但是,在小学阶段的“整除”部分,仍然不考虑自然数0,因而在约数、倍数等概念中都不包括0。
另外,一般情况下我们不说数0是几位数,所以最小的一位数是1。
据说0这个数学符号是印度人发明的,商人们把它带到阿拉伯,以后又传到欧洲,现在已经被全世界接受了。可是,0的意义是什么呢?
《21世纪,十万个为什么·数学之谜》(少年版)的编者说:“通常0是表示没有。”这话不错。印度人、阿拉伯人、欧洲人、全世界的人都是抱着这种“通常”的观点的。因为这种观点对人们的日常生活、应用计算都很明确、单纯而又简便。但是,编者又说:“它的意义不仅表示没有,还有其他的意义。”这就要进一步探索0的内涵了。
那么,0还有哪些“其他的意义”呢?
编者说:“在日常生活中,天气的冷热用气温表示……比如0摄氏度……表示冰与水混和在一起的那个温度,从0摄氏度向上为零上……从0摄氏度向下称为零下。”这是一种“界标”的作用。编者说:“还有很多例子都可以说明0在生活中有很多含义,不仅仅表示算术中的没有。”不错,起这类“界标”作用的例子是很多的,如时间的0点,空间的狄卡儿座标的原点0,数轴上的0点等等。编者又说:“0在数学上是一个很重要的数字,0到1的飞跃体现了从无到有的过程。”从0到1,从无到有的“飞跃”,确是一个大问题。但是0和1,有和无之间是怎么“飞跃”的呢?《数学之谜》的作者并没说出个道道来,因为迄今为止数学家们对此一无所知(其实不是不知,而是不认可另外一套被放弃到一边的理论)。所以,他们的这种“飞跃”,不过是一句毫无意义的空话。《统一场论》是知道从0到1,从无到有;从1到0,从有到无的运动变化的规律的,不过到文章的最后再讨论吧。
《数学之谜》的编者又说:“其实0也是充满了矛盾,比如任意多个数与0相加,0并不改变它们的值;而许多个数相乘,只要其中有一个数是0,乘积就是0,看0的威力多大啊!”这的确是一个矛盾。和这种矛盾类似的还有0既不能做除数,又不能做被除数。不过,细想起来,这类矛盾并非0自身所有的,而是数学逻辑造成的,也就是说,是人为的。其实,0自身有一个最本质的根本矛盾,《数学之谜》的编者及所有的数学家们都心知肚明而避而不谈。在小学算术课上老师就向孩子们灌输:1+-1=0,2+-2=0,n+-n=0……可是如果孩子们问:老师,这个算式能否用逆算法来进行验算呢?一般的老师回答:不能!有些有数学修养的老师就会瞠目结舌。因为如果说不能,那么,用逆算法检验计算是否正确的定理就有了缺口,而如果说能,那么算式就变成0=1+-1,0=2+-2,0=n+-n……如果再扩大到极值,那么就成为0=∞+-∞,数学王国岂不塌了天!
现代数学看上去巍峨壮丽,流光溢彩,走进去曲径回廊,门户纵横,其实它的根基是很脆弱的,纯粹是人类这些“二维生物”在地面上生活经验的概括和扩展。现代数学从人之初就逐步构建起三大支柱:一是直线数系(这是数的值的根);二是正方形与外切于它的圆的函数关系(这是数的形之本);三是逻辑学(这是数学的方法论)。我们先从数学逻辑上看看那个0的巨大“威力”吧!
数学逻辑本质上就是形式逻辑。希尔伯特曾给数学逻辑定下“一致性”定理,所谓“一致性定理”,就是形式逻辑的排中律,也就是说,甲是甲,乙是乙;甲不是乙,乙不是甲,即一个数不能既是甲又是乙(这就是“罗索悖论”之根,等探讨这个问题时,我们再就教于《数学之谜》的编者)。如果0=∞+-∞,直线数系、线性原理、惯性原理、等效原理……不仅数学、物理学,一切自然科学现存的定理、定律等等一切都将陷入一片混乱之中!博士们、教授们、院士们、大师们,我说的对不对呢?如果不对,那么就请先生们解开这个“二律悖反”的死疙瘩吧!就请你们回答一下,孩子们这个天真、纯正、简单、明确的为什么吧!
《数学之谜》的编者还说:“我们必须知道数学上的概念是相对的,不是不变的。0也是如此。”但是,它们是相对于什么的呢?又是怎么变的呢?
从人类识数到现在,数、数的符号、数的性质、类别、数系、数的计算方法、几何学等等都源于人类在地面上生活、劳动创造的经验。所以数学的概念都是相对于地面的,惯性系的。惯性原理、直线数系就是地面在牛顿空间中的延伸。随着人类的进化,生产的发展,科学的进步,数学的概念和方法论也随着不断的发展变化。但是,数学的概念和方法论相对于地面、惯性系,即静力学平衡态,能量(引力与斥力)分布为1:1这个基础和以斥力为中心的运动观却是始终如一,没有变。人类创造出来的手推车、汽车、火车、飞机、火箭、飞船……就是证明。科学家们虽然把0从纯粹的无变为数轴上任意选取的原点,狄卡儿三维座标原点、爱因斯坦四维时空原点以及温度表之类的界标原点等等,但是科学家们却从来没有把0从没有变为有,从0变为1。只有电脑的二进位制由0、1变为2,似乎才有点从无到有,从0到1的意思。但是,这一进化的根源,如波尔所说,是莱布尼兹受了太极图、八卦的启发而创造出来的。
是的,我们中华古文明中也有个0,它就是太极图。中华古文明的0和印度、阿拉伯、欧洲的0不同,它虽然也是一个“不占面积的数学的点”,但它不是简单的无。它是无形无影的阴阳二气的统一,用现代科学的行话来说,它就是场。一个0,被一条S形的曲线从中分为两部分,曲线两边就是阴阳二气的存在形式——阴阳鱼。阴阳鱼首尾衔接,互相追逐,从而产生出它的运动形式——转动。0是动力学的平衡态,它不像赫尔姆霍兹·拉格朗日、哈密顿的静力学平衡态1/2:1/2需要外力——斥力、切线力来推动。场0在转动中生出“两仪”(两极),“四相”(外切于0的正方形)、“八卦”(正方形转动45度)。就是在太极(0)、两仪(两极)、四相(外切于0的正方形)、八卦(正方形转动45度)这种转动中,一方面由相对于0的各向异性、非均匀分布的四相、八卦发生了向场的引力中心0的收缩,即收缩为各向同性、均匀分布的圆;另一方面又由场0的斥力产生出的横向切线力,(四相、八卦)在转动时划出了一个新的同心的大圆,这就是场0的膨胀。如此循环反复、收缩、膨胀,于是由阴阳二气(吸引与排斥)构成的太极0就由无变为有,由0“飞跃”到1(m)。
上面所阐述的仅仅是场0的平面效应,这个平面效应是质点的轨道运动的公式,即E=mπ/4V2。可是由无到有,由0到1(m)的运动过程是立体空间的,所以,场0从无到有,从0到1(m)的“飞跃”过程也是立体空间(场)的。因而除了刘徽定理——4:π的平面定理之外,还有祖冲之、祖日恒 的立体的场的质能分布律3:2(也就是刻在阿基米德墓碑上的那个半球与外切于它的圆柱体之比)。二者的综合就是从无到有,从0到1(m)的质能分布律C3π/42/3。其中:C3是空间场,2π是场的相对于引力中心0的各向同性、均匀分部的引力收缩,即转化为质点m,12-2π则是斥力膨胀,即横向切线力。也就是这个质能分布律决定了如行星绕日运动及它们的轨道分布律,即波得·提丢斯的经验定律。阴阳二气源于混元一气也就是0。关于这些问题,以后再说。
❹ 数学小知识0的来历
关于0的起源,有以下几种观点:
0是极为重要的数字符号,而关于0这个思维的概念在其它地区很早就有。
据历史记载,玛雅人有一个被称为“人类头脑最光辉的产物”的数学体系,玛雅人(或他们的欧梅克祖先)独立发展了零的概念,玛雅文明最早发明特别字体的0。玛雅数字中0以贝壳模样的象形符号代表。并且使用二十进制的数字系统;数字以点(·)代表1,横棒(-)代表5。碑文显示他们有时会用到到亿。
这里提到的零,并不是我们所用的阿拉伯数学字符0,这应该是最早含有0概念的数字符号了。
古埃及早在公元前2千年就有人在记帐时用特别符号来记载零。
古巴比伦的文献记载中有0的萌芽。但是与现在不同的是,0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作11。
在中国很早便有0这个概念,许多文献中均有记载。中国古代使用算筹进行计算,在算筹和算盘上,以空位表示0。公元前4世纪,中国数学家就已经了解负数和零的概念了。(而在我国远古时代的结绳记数法中,〇是在对“有”的否定中出现的,意思是“没有”。)
公元1世纪的《九章算术》说:“正负术曰:同名相除,异名相益,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之。”(这段话的大意是“减法:遇到同符号数字应相减其数值,遇到异符号数字应相加其数值,零减正数的差是负数,零减负数的差是正数。”)以上文字里的“无入”通常被数学历史家认为是零的概念。(全文见维基文库的《九章算术》)虽然如此,但是当时并没有使用符号来表示零。筹算数码中开始没有“零”的符号,遇到"零"就空位。比如“6708”就可以表示为"┴〧╥"(由于七没有对应的符号,用商码代替的;毕竟商码来源于算筹)。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"〇"的符号出现有关。【印度直到7世纪初,印度大数学家葛拉夫.玛格蒲达才首先说明了0的性质,任何数乘0是0,任何数加上0或减去0得任何数。遗憾的是,他并没有提到以命位记数法来进行计算的实例.】
不过多数人认为,“0”这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了“0”。但是据说公元前2500年左右,印度婆罗门教最古老的文献《吠陀》已有“0”这个符号的应用,当时的0在印度婆罗门教表示空的位置(按照这个说法,中国远古结绳记数法中,〇是在对“有”的否定中出现的,意思是“没有”。也可以算了)。---个人对最后这段存疑问,如果是真的;那么为何公元六世纪印度人还在用黑点作为"0"的符号,至于何时由点转为圆,具体时间已无从考证。(公元718年出书的《开元占经》104卷算法,1089页,译制印度的《九执历》;那个时候印度人的零依然是黑点。)
大约在公元前三世纪,古印度人完成了数字符号1到9的发明创造,但此时还没有“0”。“0”的符号出现,是在1到9数字符号发明一千多年后的印度笈多王朝。刚出现时,它还不是用圆圈;而是用一个黑点来表示。至于何时由点转为圆,具体时间已无从考证。直到公元876年,人们在印度的瓜廖尔这个地方;发现了一块刻有“27o”这个数字的石碑*(下面附图)。这也是人们发现的有关“0”符号的最早记载,但是这个零的符号是个比〇小一圈的圆圈o;也不是现代“0”这个符号的样子。
但是如果说符号的话,中国算筹里早已经有空格;后来更是用铜钱在算筹里表示零的符号。此后铜钱演变为〇,作为零的符号;是很正常的事情。在690年时;武则天颁布了则天文字,其中一个字就是“〇”了(比印度的0的小圆圈符号o早出现186年);虽然当时还不是零的意思。而中国古代数学上记录“〇”时是用“囗”来表示的,一方面为了将数字区别开来;更重要的是由于我国古代用毛笔书写。而毛笔行书连笔书写的习惯,写“〇”比写“囗”要方便得多,所以零逐渐变成按逆时针方向画“〇”;这就是中国的零号。1180年金朝《大明历》中就有“四百〇三”,“三百〇九”等数字。
据英国着名科学史专家李·约瑟博士的考证,“0”产生于中印文化,是中国首先使用的位值制促进了零的出现。印度是在中国筹算和位值制的影响下才创造“0”的。中国远在三千多年前的殷商时期,就采用了位值制,甲骨文中有“六百又五十又九(659)”等数字,明确地使用了十进位。
而印度一个黑点,又如何演化成〇的符号呢?不知道有没有演变过程的证据?而且古印度是没有十进位值制的,中国是全球最早有十进位值制的。古埃及虽然是十进制,但是没有位置制。巴比伦虽然有位置制,但是巴比伦是60进制;只有中国有同时满足十进制与位置制而来的十进位值制。但是中文文献中〇的符号表示“0”最早出现时间,也是无法考据的。宋代蔡沈《律率新书》(1135一1198)中用方格表示空缺。1180年金朝《大明历》中有“四百〇三”,“三百〇九”等数字。公元1247年,秦九韶在其着作数书九章中使用符号“〇”来表示零的概念。李冶《测圆海镜》(1248)第十四问中就有“0”的图像。
❺ “0”的由来
0字体的发明始于印度。公元前2000年,印度最古老的文献《吠陀》已有特别“0”概念的应用,当时的0在印度表示无(空)的位置。约在6世纪初,印度开始使用命位记数法。7世纪初印度大数学家葛拉夫.玛格蒲达首先说明了0的0是0,任何数加上0或减去0得任何数。
遗憾的是,他并没有提到以命位记数法来进行计算的实例。也有的学者认为,0的概念之所以在印度产生并得以发展,是因为印度佛教中存在着“绝对无”这一哲学思想。
公元733年,印度一位天文学家在访问现伊拉克首都巴格达期间,将印度的这种记数法介绍给了阿拉伯人,因这种方法简便易行,不久就取代了在此之前的阿拉伯数字。这套记数法后来又传入西欧地区,由欧洲发扬光大。
说起“0”的出现,应该指出,中国古代文字中,“零”字出现很早。不过那时它不表示“空无所有”,而只表示“零碎”、“不多”的意思。如“零头”、“零星”、“零丁”。“一百零五”的意思是:在一百之外,还有一个零头五。
随着阿拉数字的引进。“105”恰恰读作“一百零五”,“零”字与“0”恰好对应,“零”也就具有了“0”的含义。0在中国古代叫做金元数字。
(5)欧洲数学家为什么接受0扩展阅读:
在计算机科学中,0经常用于表示布尔值假(F)。
在数字电路中,不使用精确的电压值来代表信号的值,只使用“0”和“1”两个值。“0”表示低于预先规定的阈值电压,被称为低电平或者逻辑0。与之对应,“1”表示高于预先规定的阈值电压,被称为高电平或者逻辑1。注意负逻辑时的规定相反,高电平为逻辑0。
在电话网络中,国家代码(国家或地区号)开始为00(两个0),其下的地方区号(郡或市等地区代码)开始为0(一个0)。
数字0的使用使数学快速发展。
❻ 数学家的小故事
陈景润:小时候,教授送我一颗明珠
20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。
不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。
小小陈景润,自己对自己因材施教着。
一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。
沈元是中国着名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。
大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。
师手遗“珠“,照亮少年奋斗的前程
“我们都知道,在正整数中,2、4、6、8、10......,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“
像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。
“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。
“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。
该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时着名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界着名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想象力一下全给调动起来。
“数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!”
沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:
“你行吗?你能摘下这颗数学皇冠上的明珠吗?”
一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被着名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。
1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!
1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。
名人成长路
陈景润(1933-1996),当代着名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)。
女数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,着有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。
从她遗留下来的着作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。
17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代着名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在着作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史只有100年。
数学会女前辈高扬芝
高扬芝(1906-1978 ),江西南昌人,从小学习勤奋,特别喜欢数学。
高中毕业后考入北京大学数学系,由于学习成绩优秀,1930年大学毕业后应聘到上海大同大学担任数学教员,后成为教授、数学系主任。在课堂教学中,她遵循《学记》中所说的:“善歌者使人继其声,善教者使人继其志。”所以,高扬芝的数学教学一贯是兢兢业业、讲求实效,深受学生欢迎。
高扬芝长期从事数学分析(旧时叫高等微积分)、高等代数和复变函数等课程的教学与研究。她深知,高等数学比初等数学更加抽象,外行人常常把它看成是由冷酷的定义、定理、法则统治着的王国。因此,高教授常常告诉学生,数学结构严谨,证明简洁,蕴含着数学的美。它像一座迷宫,只要你潜心学习、研究,就能寻求到走出迷宫的正确道路。一旦顺利走出迷宫,成功的愉悦会使你兴奋不已,你会向新的、更复杂的迷宫挑战,这就是数学的魅力。
她在上海大同大学工作不到五年的时间里,自身潜在的科研天赋很快被唤醒催发。经过刻苦钻研教材,结合教学实践,她撰写出论文《Clebsch氏级数改正》,1935年在交通大学主编的《科学通讯》上连载,得到同行好评。解放后,她又着有《极限浅说》《行列式》等科普读物多部。
高扬芝是中国数学会创始时的少数女性前辈之一。1935年7月25日中国数学会在上海交通大学图书馆举行成立大会,共有33人出席,高扬芝就是其中的一位。在这次年会上,她被推选为中国数学会评议会评议,后连任第二、三届评议会评议。1951年8月,中国数学会在北京大学召开了规模空前的第一次全国代表大会,高扬芝出席了大会。她是这次到会代表63人中惟一的女代表。20世纪60年代,她被选为江苏省数学会副理事长。
第一位数学女博士徐瑞云
徐瑞云,1915年6月15日生于上海,1927年2月考入上海着名的公立务本女中读书。徐瑞云从小喜欢数学,读中学时对数学的兴趣更加浓厚,因此,1932年9月高中毕业后报考了浙江大学数学系。当时,浙大数学系的教授有朱叔麟、钱宝琮、陈建功和苏步青。此外,还有几位讲师、助教。数学系的课程主要由陈建功和苏步青担任。当时数学系的学生很少,前一届两个班学生共五人,她这届也不过十几人。
当时苏步青才30岁,看上去十分年轻,因此徐瑞云的同学中有人认为苏步青是助教,可是听完一堂课后就不住地赞叹说:“想不到助教竟能讲得这么好。”这件事引起知情者的哄笑。徐瑞云在陈建功和苏步青的教导下,勤奋学习,专心听讲,认真做笔记,她的考试成绩经常是满分。1936年7月,徐瑞云以优异成绩毕业了,被浙大数学系留校任助教。1937年2月,26岁的徐瑞云与28岁的生物系助教江希明喜结伉俪。新婚三个月后,徐瑞云夫妇获得亨伯特留学德国的奖学金,双双乘船漂洋赴德国留学,攻读博士学位。
徐瑞云有幸被德国着名的数学大师卡拉凯屋独利接受,由他担任她的数学博士指导老师。当时有不少学生想请他作导师,他都没有同意。而徐瑞云这位东方女士因学习勤奋,数学功底扎实,成了卡拉凯屋独利的关门弟子。徐瑞云主要研究三角级数论。这门学科起源于物理学的热传导问题的傅里叶分析的主要部分,是当时国际上研究的热门之一,在中国还是一个空白。
徐瑞云为将来能在分析、函数论方面赶上世界先进水平,废寝忘食,广撷博采,把大部分时间都用在图书馆里。1940年底,徐瑞云获得博士学位,成了中国历史上第一位女数学博士。她的博士论文“关于勒贝格分解中奇异函数的傅里叶展开”,1941年发表在德国《数学时报》上。
完成学业的徐瑞云夫妇,随即离德回国,于1941年4月回到母校,双双被聘为副教授,正式登上在战火硝烟的大后方培养人才的讲台。在艰苦的条件下,陈建功和苏步青没有中断在杭州时共创的函数论和微分几何两个数学讨论班,这是一种教学相长、遴选英彦的科研形式,徐瑞云也参与其间。1944年11月,英国驻华科学考察团团长李约瑟参观了浙大数学系和理学院,连声称赞道:“你们这里是东方的剑桥!”这更加激励了徐瑞云的勤奋工作。她这时教的学生曹锡华、叶彦谦、金福临、赵民义、孙以丰、杨宗道等,后来都成了杰出的数学家和数学教育家。1946年,31岁的徐瑞云提升为正教授。
1952年,徐瑞云调入浙江师院,被任命为数学系主任,从此全身投入了艰苦的创建数学系的工作中。在她的领导下,没有几年功夫,数学系已初具规模,教学质量不断提高。第一届本科毕业生约有三分之一考取了研究生。他们系也成为全国同行的楷模,进入全国同行前列。徐瑞云在建设数学系的同时,没有忘记科学研究。她翻译了苏联那汤松的名着《实变函数论》。译本于1955年由高等教育出版社出版。
❼ 知道0背后的意义吗
“你” “ 从头开始” “口”等意思。。。。 0的由来是:大约在公元前三世纪,古印度人终于完成了数字符号1到9的发明创造,但此时还没有“0”。“0”的出现,是在1到9数字符号发明一千多年后的印度笈多王朝。刚出现时,它还不是用圆圈,而是用点来表示。至于何时由点转为圆,具体时间已无从考证,但在公元876年,人们在印度的瓜廖尔地方发现了一块刻有“270”这个数字的石碑。这也是人们发现的有关“0”的最早的记载。 后来,这套数字符号传到阿拉伯,然后由阿拉伯人将这套数字介绍到欧洲。欧洲人误认为是阿拉伯人发明的,所以称它们为阿拉伯数字。 之前欧洲人使用的是罗马数字。当“0”传到欧洲时,罗马教皇认为“0”是“异端邪说”,下令禁止使用。有一位罗马学者从一本天文书中见到了阿拉伯数字,对“0”的作用十分推崇,专门在他的日记本上记下了“0”在记数和运算中的优越性。后来,这件事被教皇知道了,说他玷污了上帝创造的神圣的数,将他逮捕入狱,还对他施行了拶刑。但迫害无法阻挡先进知识的传播,“0”不仅在欧洲传播开来,还迅速地传遍了全世界。 它们传入中国的时间,大约在十三世纪。但据英国着名科学史专家李�6�1约瑟博士的考证,“0”产生于中印文化,是中国首先使用的位值制促进了零的出现。印度是在中国筹算和位值制的影响下才创造“0”的。中国远在三千多年前的殷商时期,就采用了位值制,甲骨文中有“六百又五十又九(659)”等数字,明确地使用了十进位。在《诗经》中,零的含义被解释成为“暴风雨末了的小雨滴”,计数中把零作为“没有”看待。中国魏晋时期的数学家刘徽在注《九章算术》时,已明确地将“0”作为数字了,使用过程中,开始用“口”表示,后来把方块画成圆圈。到了十三世纪,南宋数学家正式开始使用“0”这个符号。由此可见,中国是“0”的发源地。
❽ 到底是什么妨碍了数学家们接受负数
思想的局限性妨碍了负数被接受的速度。
负数最早出现在中国的历史上,大抵就是用来计算盈亏的,毕竟做生意有盈就会有亏,所以人们接受的也顺其自然。
相对于中国人的圆滑,外国的数学家们就比较执着了。他们通过各种方式拒绝接受负数的存在。就像是执着的认为已经为零的数字怎么可能再减出别的数字来。
他们的思想局限在了数字的表面意义上,认为零就是最少的,再少也不过是没有而已。即便有人通过方程式计算出来负数,他们也会固执的认为那个是个假数而不是真实存在的数字。
这样的思想在欧洲存在了两个多世纪,漫长的时间里,无数的数学家不断的演算证实,负数最后才慢慢的被接受,被认可。
这个方面不得不佩服欧洲科学家们的执着精神,他们不断的发现数学的概念并且严苛的给以验证,而不是如我们这般逆来顺受,或许这也是负数最早出现在我们的历史上却发扬光大在别人的历史的原因吧。
❾ “0”的由来是怎样的
那是大约1500年前,欧洲的数学家们是不知道用“0”的,他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。
过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它引进来,谁就是亵渎上帝!
于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹住,使他两手残废,让他再也不能握笔写字。
就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。
后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
❿ 有人知道关于数字0的历史嘛
0的起源
0的起源
阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。
阿拉伯数字最初出自印度人之手,也是他们的祖先在生产实践中逐步创造出来的。
公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。
印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学着作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学着作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。
阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。
印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。”
我们都知道,数学计算的基础是阿拉伯数字:1、2、3、4、5、6、7、8、9、0。离开这些数字,我们无法进行计算。其实,这些阿拉伯数字并不是阿拉伯人发明创造的,而是发源于古印度,后来被阿拉伯人掌握、改进,并传到了西方,西方人便将这些数字称为阿拉伯数字。以后,以讹传讹,世界各地都认同了这个说法。
阿拉伯数字是古代印度人在生产和实践中逐步创造出来的。
在古代印度,进行城市建设时需要设计和规划,进行祭祀时需要计算日月星辰的运行,于是,数学计算就产生了。大约在公元前3000年,印度河流域居民的数字就比较先进,而且采用了十进位的计算方法。
到公元前三世纪,印度出现了整套的数字,但在各地区的写法并不完全一致,其中最有代表性的是婆罗门式:这一组数字在当时是比较常用的。它的特点是从“1”到“9”每个数都有专字。现代数字就是由这一组数字演化而来。在这一组数字中,还没有出现“0”(零)的符号。“0”这个数字是到了笈多王朝(公元320—550年)时期才出现的。公元四世纪完成的数学着作《太阳手册》中,已使用“0”的符号,当时只是实心小圆点“·”。后来,小圆点演化成为小圆圈“0”。这样,一套从“1”到“0”的数字就趋于完善了。这是古代印度人民对世界文化的巨大贡献。
印度数字首先传到斯里兰卡、缅甸、柬埔寨等印度的近邻国家。
公元七到八世纪,地跨亚非欧三洲的阿拉伯帝国崛起。阿拉伯帝国在向四周扩张的同时,阿拉伯人也广泛汲取古代希腊、罗马、印度等国的先进文化,大量翻译这些国家的科学着作。公元771年,印度的一位旅行家毛卡经过长途跋涉,来到了阿拉伯帝国阿拔斯王朝首都巴格达。毛卡把随身携带的一部印度天文学着作《西德罕塔》,献给了当时的哈里发(国王)曼苏尔。曼苏尔十分珍爱这部书,下令翻译家将它译为阿拉伯文。译本取名《信德欣德》。这部着作中应用了大量的印度数字。由此,印度数字便被阿拉伯人吸收和采纳。
此后,阿拉伯人逐渐放弃了他们原来作为计算符号的28个字母,而广泛采用印度数字,并且在实践中还对印度数字加以修改完善,使之更便于书写。
阿拉伯人掌握了印度数字后,很快又把它介绍给欧洲人。中世纪的欧洲人,在计数时使用的是冗长的罗马数字,十分不方便。因此,简单而明了的印度数字一传到欧洲,就受到欧洲人的欢迎。可是,开始时印度数字取代罗马数字,却遭到了基督教教会的强烈反对,因为这是来自“异教徒”的知识。但实践证明印度数字远远优于罗马数字。
1202年,意大利出版了一本重要的数学书籍《计算之书》,书中广泛使用了由阿拉伯人改进的印度数字,它标志着新数字在欧洲使用的开始。这本书共分十五章。在第一章开头就写道:“印度的九个数目字是‘9、8、7、6、5、4、3、2、1’,用这九个数字以及阿拉伯人叫做‘零’的记号‘0’,任何数都可以表示出来。”
随着岁月的推移,到十四世纪,中国印刷术传到欧洲,更加速了印度数字在欧洲的推广与应用。印度数字逐渐为全欧洲人所采用。
西方人接受了经阿拉伯传来的印度数字,但他们当时忽视了古代印度人,而只认为是阿拉伯人的功绩,因而称其为阿拉伯数字,这个错误的称呼一直流传至今。
作者:与丗隔绝 2007-6-17 02:07 回复此发言
--------------------------------------------------------------------------------
2 回复:0 阿拉伯数字的起源
(阿拉伯数字)名称起源及历史简介
一、“阿拉伯数字”名称起源
波斯帝国征服印度,便传入阿拉伯。而大食帝国兴起,该数字系统又从阿拉伯传到西班牙。欧洲人以为是阿拉伯人发明的,故称做‘阿拉伯数字’不过,现又正名为‘印度˙阿拉伯数字’。但大多数人仍习惯称做阿拉伯数字。
二、历史简介
阿拉伯数字是由印度人所发明的,而印度人的数学水平是世界最高的。波斯帝国征服印度,我们现在使用的阿拉伯数字,是印度人在西元第三世纪发明的。
在西元825年左右,一位波斯数学家写了一本数学着作,书中用的数系,便采用这套数字系统。一直到了西元1120年,这本书有了拉丁文译本,才令阿拉伯数字在全欧大为流行,起了取代罗马数字的作用。不过,一直要到十五世纪后,阿拉伯数字的写法才确定下来,与我们今天见到的写法相同。
今天所见的阿拉伯数字,是0~9的符号,共十个符号组成。因为排列整齐,方便大量、繁复的运算。且由于工业革命后,欧洲国力大增,阿拉伯数字广为全球使用,成为全球的共通数字系统。早期其他的数系都有一个表示10的符号,但却没有0。而阿拉伯数字则由0~9,加上0能够明确标出位数不同的差异,例如:205与250。这使得人们在进行乘除运算时,更为简单,而且容易检查、不易出错。也因为有了这套数字系统标示法,令数学迅速发展,奠定了今天的科学基础。
感言:虽然阿拉伯数字看起来很简单,
但它是我们数学必用、而且全球共用,
生活不可少的发明。
作者:与丗隔绝 2007-6-17 02:09 回复此发言
--------------------------------------------------------------------------------
3 回复:0 阿拉伯数字的起源
阿拉伯数字0是不是印度人发明的?
公元500年前后,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那末第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。
两百年后,团结在伊斯兰教下的阿拉伯人征服了周围的民族,建立了东起印度,西从非洲到西班牙的撒拉孙大帝国。后来,这个伊斯兰大帝国分裂成东、西两个国家。由于这两个国家的各代君王都奖励文化和艺术,所以两国的首都都非常繁荣,而其中特别繁华的是东都——巴格达,西来的希腊文化,东来的印度文化都汇集到这里来了。阿拉伯人将两种文化理解消化,从而创造了独特的阿拉伯文化。
大约700年前后,阿拉伯人征眼了旁遮普地区,他们吃惊地发现:被征服地区的数学比他们先进。用什么方法可以将这些先进的数学也搬到阿拉伯去呢?
771年,印度北部的数学家被抓到了阿拉伯的巴格达,被迫给当地人传授新的数学符号和体系,以及印度式的计算方法(即我们现在用的计算法)。由于印度数字和印度计数法既简单又方便,其优点远远超过了其他的计算法,阿拉伯的学者们很愿意学习这些先进知识,商人们也乐于采用这种方法去做生意。
后来,阿拉伯人把这种数字传入西班牙。公元10世纪,又由教皇热尔贝·奥里亚克传到欧洲其他国家。公元1200年左右,欧洲的学者正式采用了这些符号和体系。至13世纪,在意大利比萨的数学家费婆拿契的倡导下,普通欧洲人也开始采用阿拉伯数字,15世纪时这种现象已相当普遍。那时的阿拉伯数字的形状与现代的阿拉伯数字尚不完全相同,只是比较接近而已,为使它们变成今天的1、2、3、4、5、6、7、8、9、0的书写方式,又有许多数学家花费了不少心血。
阿拉伯数字起源于印度,但却是经由阿拉伯人传向四方的,这就是它们后来被称为阿拉伯数字的原因。
作者:与丗隔绝 2007-6-17 02:11 回复此发言
--------------------------------------------------------------------------------
4 回复:0 阿拉伯数字的起源
【词语】:阿拉伯数字
【注音】:ā lā bó shù zì
【释义】:国际通用的数字,就是0,1,2,3,4,5,6,7,8,9。
古代印度人发明了包括“零”在内的十个数字符号,还发明了现在一般通用的定位计数的十进位法。由于定位计数,同一个数字符号因其所在位置不同,就可以表示不同数值。如果某一位没有数字,则在该位上写上“0”。“0”的应用,使十进位法臻于完善,意义重大。十个数字符号后来由阿拉伯人传人欧洲,被欧洲人误称为阿拉伯数字。由于采用计数的十进位法,加上阿拉伯数字本身笔划简单,写起来方便,看起来清楚,特别是用来笔算时,演算很便利。因此随着历史的发展,阿拉伯数字逐渐在各国流行起来,成为世界各国通用的数字。
补充
最古的计数目大概至多到3,为了要设想“4”这个数字,就必须把2和2加起来,5是2加2加1,3这个数字是2加1得来的,大概较晚才出现了用手写的五指表示5这个数字和用双手的士指表示10这个数字。这个原则实际也是我们计算的基础。罗马的计数只有到V(即5)的数字,X(即10)以内的数字则由V(5)和其它数字组合起来。X是两个V的组合,同一数字符号根据它与其他数字符号位置关系而具有不同的量。这样就开始有了数字位置的概念,在数学上这个重要的贡献应归于两河流域的古代居民,后来古鳊人在这个基础上加以改进,并发明了表达数字的1234567890十个符号,这就成为我们今天记数的基础。八世纪印度出现了有零的符号的最老的刻版记录。当时称零为首那。
开放分类:
数学、阿拉伯数字
贡献者:
成功领路、f03055、xxhcn2003、fjd0105、悠然孤飞
本词条在以下词条中被提及:
算盘、蒸汽机车、5、2、旭烈兀、《日本十进分类法》、九方科技控股有限公司、花钟、扑克牌博物馆、数字、骷髅会、邵佳一、车次、电报、红印花双色复盖小字4分、国家行政机关公文处理办法、阿拉伯文化、幻方、数字商标、中国行政法实用通典、中国围棋竞赛规则、文明古国、古印度文明、行列输入法、出纳、标准编号、BP机、围棋规则、细胞色素P450同工酶、热尔贝 更多>>
关于本词条的评论(共2条):
·8cuo8cuo
·通常,我们把1、2、3、4……9、0称为“阿拉伯数字”。其实,这些数字并不是阿拉伯人创造的,它们最早产生于古代的印度。可是人们为什么又把它们称为“阿拉伯数字”呢? 据传早在公元七世纪时,阿拉伯人渐渐地征服了周围的其他民族,建立起一个东起印度,西到非洲北部及西班牙的萨拉森大帝国。到后来,这个大帝国又分裂成为东、西两个国家。由于两个国家的历代君主都注重文化艺术,所以两国的都城非常繁荣昌盛,...
作者:与丗隔绝 2007-6-17 02:15 回复此发言
--------------------------------------------------------------------------------
5 回复:0 阿拉伯数字的起源
【词语】:阿拉伯数字
【注音】:ā lā bó shù zì
【释义】:国际通用的数字,就是0,1,2,3,4,5,6,7,8,9。
古代印度人发明了包括“零”在内的十个数字符号,还发明了现在一般通用的定位计数的十进位法。由于定位计数,同一个数字符号因其所在位置不同,就可以表示不同数值。如果某一位没有数字,则在该位上写上“0”。“0”的应用,使十进位法臻于完善,意义重大。十个数字符号后来由阿拉伯人传人欧洲,被欧洲人误称为阿拉伯数字。由于采用计数的十进位法,加上阿拉伯数字本身笔划简单,写起来方便,看起来清楚,特别是用来笔算时,演算很便利。因此随着历史的发展,阿拉伯数字逐渐在各国流行起来,成为世界各国通用的数字。
补充
最古的计数目大概至多到3,为了要设想“4”这个数字,就必须把2和2加起来,5是2加2加1,3这个数字是2加1得来的,大概较晚才出现了用手写的五指表示5这个数字和用双手的士指表示10这个数字。这个原则实际也是我们计算的基础。罗马的计数只有到V(即5)的数字,X(即10)以内的数字则由V(5)和其它数字组合起来。X是两个V的组合,同一数字符号根据它与其他数字符号位置关系而具有不同的量。这样就开始有了数字位置的概念,在数学上这个重要的贡献应归于两河流域的古代居民,后来古鳊人在这个基础上加以改进,并发明了表达数字的1234567890十个符号,这就成为我们今天记数的基础。八世纪印度出现了有零的符号的最老的刻版记录。当时称零为首那。
开放分类:
数学、阿拉伯数字
贡献者:
成功领路、f03055、xxhcn2003、fjd0105、悠然孤飞
本词条在以下词条中被提及:
算盘、蒸汽机车、5、2、旭烈兀、《日本十进分类法》、九方科技控股有限公司、花钟、扑克牌博物馆、数字、骷髅会、邵佳一、车次、电报、红印花双色复盖小字4分、国家行政机关公文处理办法、阿拉伯文化、幻方、数字商标、中国行政法实用通典、中国围棋竞赛规则、文明古国、古印度文明、行列输入法、出纳、标准编号、BP机、围棋规则、细胞色素P450同工酶、热尔贝 更多>>
关于本词条的评论(共2条):
·8cuo8cuo
·通常,我们把1、2、3、4……9、0称为“阿拉伯数字”。其实,这些数字并不是阿拉伯人创造的,它们最早产生于古代的印度。可是人们为什么又把它们称为“阿拉伯数字”呢? 据传早在公元七世纪时,阿拉伯人渐渐地征服了周围的其他民族,建立起一个东起印度,西到非洲北部及西班牙的萨拉森大帝国。到后来,这个大帝国又分裂成为东、西两个国家。由于两个国家的历代君主都注重文化艺术,所以两国的都城非常繁荣昌盛,...