‘壹’ 数学怎么找等量关系式不错的技巧及方法
即可利用公式得到
等量关系
,从而得到方程(x+
x)×2=24像这类各数量间关系有公认的公式可找出内在联系的,就可直接用公式找等量关系
‘贰’ 怎么找等量关系
1、根据常用的计算公式找出等效关系:
常用的数量关系:长方形面积=长×宽;可以根据计算公式找等量关系.例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?”根据长方形面积的计算公式“长×宽=面积”,可列出方程4 =19。
2、掌握数学术语以找到等效关系:
常见的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。
3、根据常见的数量关系找等量关系:
常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系。
4、借助线段图确定等量关系。
线段图能使抽象的数量关系具体化,使隐蔽的数量关系明朗化。对于较复杂的题目,同学们可借助线段图找等量关系。
5、根据文字关系式找等量关系。
(2)数学怎么找等量关系式扩展阅读:
常见的等量关系:
1、减法等量关系:
(1)被减数=减数+差
(2)差=被减数-减数
(3)减数=被减数-差
2、加法等量关系:
(1)加数=和-另一个加数
(2)和=加数+加数
3、乘法等量关系:
(1)积=因数×因数
(2)因数=积÷另一个因数
(3)单价×数量=总价
(4)速度×时间=路程
(5)工作效率×工作时间=工作总量
‘叁’ 找等量关系的八种方法
找等量关系列方程的八种方法
一、从关键句入手找等量关系。
关键句是应用题反映数量关系的核心。解题前~要认真审题~从题中找出关键句~再把关键句用语言文字等式表示出来~从而列出方程~如:某班有女生38人~比男生的2倍多4人~男生有多少人,
把关键句“比男生人数的2倍多4人”替换成女生人数,男生人数×2,4或女生人数,4,男生人数×2~可分别得到方程2x+4=38~2x=38-4。
二、借助基本等量关系列方程
学习列方程应用题之前~要熟记“速度×时间,路程~单价×数量,总价~工作效率×工作时间,工作量~总数量?总份数,平均数”等基本数量关系。通过这些基本数量关系分析三者的关系而列出方程。
三、根据计算公式列方程:
我们在几何初步知识的学习中掌握了一些计算公式~这些公式就是一种等量关系。如:平行四边形面积、三角形面积、梯形面积、圆面积公式。
四、画线段图找等量关系:
一幅规范的线段图清晰直观地再现题目的数量关系~可以从中找出等量关系。
五、利用计算性质找等量关系:
在四则计算中~我们已经学习了运算定律性质~这些定律性质实质上体现了一种等量关系~根据它可以列出方程~如某数除以9商7余5~它除以10商6余几,
根据“被除数,商×除数,余数”得方程:10×6+x=9×7+5
六、根据几何图形特征找等量关系。
特殊的几何形体都是有某些特征~根据这些特征能寻到等量关系从而列出方程~如:一个等腰三角形顶角有40度~一个底角是多少度,
等腰三角形具有两底角相等的特征~从而得到等量关系:一个底角的度数×2,顶角的度数,180度~可得方程:2x+40=180。 七、从题目叙述的事理中找等量关系。
不少顺叙题目~可边读题目边将它提炼成文字叙述等式~根据题意列出方程~如~商店原有74千克水果糖~又运来25千克~卖了一天以后还剩下63千克。这一天卖了多少千克,
边读边提炼为:原有的,运来的,卖了的,剩下的~得方程:74,25,,63
八、根据“同一量”找等量关系
有的题目~尽管其他情节发生了变化~但叙述前后都指向某“同一量”~这“同一量”前后相等~如~某车从甲地到乙地计划每小时行35千米~6小时到达~实际提前2小时到达~每小时要行多少千米,
题中的时间~速度虽然发生了变化~但计划与实际行驶的路程都是甲乙两地相距的路程~即计划行驶的路程,实际行驶的路程~因而可得方程:(6-2)x=35×6.
‘肆’ 有哪些找等量关系的方法
一元一次方程应用题是建模思想的具体运用,就是把应用题中的数量关系建立成方程模型,运用方程解决实际问题,学生通过解答这种类型的题目有助于培养自身的综合运用能力。由于受列式计算的影响,很多学生缺乏建模观念,面对实际问题感觉无从下手,不能灵活运用方程解决实际问题。教师在实际教学中要为学生灌输建模思想,并积极传授一些方法和技巧,不断提高学生解决问题的能力。本文结合笔者多年教学实践经验和具体教学实例,简要阐述了解决一元一次方程应用题的方法技巧。
一、仔细审题,找出关键
审题是解决问题的前提,在解答一元一次方程应用题时,有很多学生在审题时不能够深入题目,对题目内容理解得模棱两可或者不到位,找不到解决问题的关键,这种不够深的审题导致很多学生无法找到解决问题的切入点,常常会使问题陷入僵局,究其原因,是因为学生在解答这种类型的题目时缺乏必要的审题方法与技巧,从而影响到学生的审题效果,导致学生在做题时出现不应有的失误。因此,在教学这部分内容时,教师必须给学生传授一些审题方面的技巧,让学生明白审题并不是单纯意义上的阅读,而是要通过阅读找到题目中的关键词、关键句,只有抓住这些关键之处,才能为顺利解决问题打下坚实的基础。
如,“假期到了,小华和表哥小明约好去骑车旅行,他们计划各自从自己的家出发碰面,已知小明骑车的速度是每小时50公里,小华骑车的速度是每小时40公里,并且两家在相距150公里的直线上。如果两人同时出发,相向而行,则经过多少小时两人车相距30公里?”这是一道非常普通的行程类应用题,学生在阅读时对于题目中的数量非常容易理解,也不会混淆,但是在实际解决问题时仍然有些学生出现了错误,通过对学生的错因分析,主要是因为学生审题不够仔细,没有正确理解题目中的关键词“相距”,这种由于审题不清造成的错误实际上是可以避免的。通过阅读分析,教师要引导学生找出此题中的关键词句应是“两人相距30公里”,很多学生理解为“两人还差30公里就要相遇”,但是在实际运用中“两人相距30公里”包括“两人相遇前的相距”和“两人相遇后的相距”两种情况,本题到底是哪种形式的相距,很多学生搞不清,这时教师可以画出两车的运行图,让学生结合运行图理解和分析,很容易就会发现这两种情况都成立,从而顺利解决问题。
二、按照需要,灵活设元
应用题是让学生运用所学的数学知识解决实际生活中的一些问题,在这种类型的题目中蕴含着许多错综复杂的数量关系, 如何将这些错综复杂的数量表示出来是解决问题的关键,而要具体表示这些数量,往往需要根据题意设未知数,也就是设元。而设元也有一定的技巧,设元并不仅仅是问什么设什么,问什么设什么仅仅是设元的一种,除了这种直接设元的方法外,还有间接设元的方法,多设元少设元等方法,这些方法需要根据问题的实际灵活选择,如果我们让学生掌握设元的方法和技巧,就能够使问题的解决事半功倍。但是正确选择合适的设元方法解决一元一次方程实际问题对于初学者来说有一定的难度,这就需要我们教师在教学这部分内容时教会学生正确灵活地设元。
如,“小明在指导弟弟做作业时发现了这样一个有趣的两位数,这个两位数的个位数字与十位数字的4倍相等,如果他将这个两位数个位与十位上的数字对换位置,则对换后的两位数要比原来的两位数大54,这个两位数是多少?”对于这一问题如果学生不仔细地分析,直接设原两位数是x,这必定会使问题的解决陷入困境,这时,教师可以引导学生分析个位和十位之间有什么关系,学生通过认真分析发现组成这个两位数个位和十位上的数字之间为4倍关系,可设十位上的数字为x,从而根据题意很容易就能知道个位数字为4x,可以用含有x的式子表示出这个两位数为10x+4x=14x,而新的两位数可以表示为:40x+x=41x,再根据题目中给出的关系列出方程:41x-14x=54,这样就可以比较容易地解决问题。由此可见,设元对于列方程解应用题至关重要,只有合理地设元,才能为后面顺利解决问题提供便利。
三、加强训练,构建代数式
将题目中的未知数量通过代数式的形式表示是审题和正确设元之后的重要环节,也是列方程的关键步骤,只有熟练地构建代数式才能合理地列出方程。但是有很多学生缺乏这方面的能力,从而导致无法列方程解应用题,这就需要教师在教学时对列代数式的内容加强训练,首先,可以训练学生对只含有一次结果的普通数学语言和代数式之间的直译,通过这样的训练为列方程扫除障碍,打下基础;其次,可以让学生尝试设未知数,并用含未知数的式子表示另一个数,初步感知列代数式的方法和技巧;最后,通过具体的应用题让学生设未知数,并用含未知数的代数式表述多个复杂的量,体会特殊到一般、实际到抽象的过程。
如,“小花家现有60米长的护栏,打算要用它围一块长方形的鸡圈,根据地块的实际,需要围成的长方形的长要比宽的2倍少3米,你能帮助她求出这个鸡圈的面积吗?”学生要想利用列方程解决好这一问题,必须首先设出未知数,将题目中涉及的数量用含未知数的代数式表示出来,通过对题目分析可以发现要想求长方形的面积,必须知道长方形的长和宽,因此,可以先让学生设长方形的长为x米,根据护栏总长60米,可以用含有x的代数式表示出长方形的宽为30-x米,再根据长比宽的2倍少3米可以列出长的另一种代数式为[2(30-x)-3]米,从而列出一元一次方程[2(30-x)-3]=x,这样就可以使应用题迎刃而解。由此可见,列代数式是用方程解决实际问题的关键,教师必须加强学生这方面的能力培养,只有这样,才能达到化繁为简、化难为易,顺利解决问题的目标。
四、深入分析,找等量关系
探求数量之间的关系是列方程解决实际问题的突破点和关键点,这需要教师对学生进行合理的方法指导,让他们学会在题目中准确地找出等量关系。首先,要让学生明确数量关系是蕴含在题目的一些句子或公式之中的,数量关系的个数可能只有一个,也可能有几个;其次,要教会学生利用应用题中的关键性语句找等量关系的方法,教师可以结合具体的例题,通过一步步的演示,让学生掌握在各种不同类应用题中快速准确地找等量关系的方法;最后,学生根据在题目中找到的等量关系列出方程,从而完美地解决一元一次方程应用题。
如“有人要从阳朔坐船到桂林去旅游,去时逆水用了3小时,来时顺水用了2小时,假如来去水流的速度都是3千米/时,你能求出阳朔距离桂林有多远吗?”此题中的等量关系不明确,通过仔细分析发现这之间的距离是一个不变量,顺水和逆水行驶的时间又知道,只需知道顺水和逆水的速度即可,而题目中已给出水流速度3千米/时,根据以前学习过的水流速度、逆水速度和顺水速度三者之间的关系,则可以得出顺水速度为(x+3)千米/时,逆水速度为(x-3)千米/时,最后根据公式:路程=速度×时间,两码头之间的距离可表示为2(x+3),也表示为3(x-3),从而列出方程2(x+3)= 3(x-3),使此题得到圆满解答。
总之,一元一次方程应用题是初中数学教学的重要内容,对于培养学生的综合运用能力具有重要意义。教师要注重解题技巧的指导,让学生全面地掌握解答一元一次应用题的具体方法,从而不断提升做题的效率,让这种类型的题目不再成为学生数学学习中的“拦路虎”。
‘伍’ 如何找等量关系的常用方法
1.基本等量关系法。
同学们曾经学习过许多等量关系,例如速度×时间=路程、单价×数量=总价等。可通过分析提示条件与等量关系列出方程。
例1:某学校购得足球10个,每只足球为5元,总共花了多少钱?
解:5×10=50(元)
答:总共花了50元。
2.基本计算公式法。
同学们在学习几何初步知识时,曾接触过不少计算公式,这些公式就是一种等量关系,可根据这些公式列出方程。
例2:长方形的周长为50米,其中长为15米,宽为多少?
解:长方形周长=(长+宽)×2,设其宽为x。
则得50=(15+x)×2
x=10
答:宽为10米。
‘陆’ 如何快速找到等量关系式
1)抓住数学术语找等量关系
应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程,例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,四年级植树多少棵?”这道题的关键词是“比……少”,从这里可以找出这样的等量关系:四年级植树棵数的2倍减去4等于五年级植树的棵数,由此列出方程2 -4=50.
(2)根据常见的数量关系找等量关系
常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系.例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量=总价”的数量关系,可以列出方程36 =216.
(3)根据常用的计算公式找等量关系
常用的计算公式有:长方形面积=长×宽;可以根据计算公式找等量关系.例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?”根据长方形面积的计算公式“长×宽=面积”,可列出方程4 =19.
(4)根据文字关系式找等量关系
例如:“学校五年级一班有36人,二班有37人;一、二、三班共有108人,那么三班有多少人?”此题用文字表示等量关系是:
一班+二班+三班=总数
一班+二班=总数-三班
一班+三班=总数-二班
二班+三班=总数-一班
根据这些文字等量关系式,可列出以下方程,如:
36+37+ =108
36+37=108-
36+ =108-37
37+ =108-36
(5)根据图形找等量关系
例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图.从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数.根据这个关系式,可列出方程70×3+2 =400.
‘柒’ 数学怎样找等量关系
找等量关系并没有一定的规律,有根据具体条件,具体分析。
如,二年级一班有男生36人,女生35人,这个班共有学生多少人?
等量关系
女生人数+男生人数=这个班的总人数
如,果园里有梨树120棵,苹果树比梨树的3倍少20棵,苹果树有多少棵?
等量关系
梨树棵树×3-20=苹果树棵树
如有具体问题,欢迎再追问。
‘捌’ 找等量关系式的几种方法
我们在做题的时候,只要认真的思考、分析总会有一些意想不到的收获。下面是我在做数学题时,发现怎样找等量关系的几种方法: 一、抓住关键句找出等量关系的方程 例如:星期天,妈妈上街买了一些水果,妈妈买3个西瓜,买苹果的个数是西瓜的3倍多1个,西瓜有多少个? 这道题的关键句是:苹果的个数是西瓜的3倍多1个,从中可以找出数量关系 西瓜×3—1=苹果的个数,设西瓜的个数为ⅹ,就可以列方程为:3ⅹ-1=3 二、根据有关的几何公式列方程 例如:三角形的高为5分米,三角形的面积为50平方分米,三角形底是多少分米? 根据“三角形的面积公式 三角形面积=底×高÷2”设三角形的底为ⅹ分米,可列出方程5ⅹ÷2=50 三、根据生活的经验找出等量关系列方程 例如:我有10块糖,吃了几块后,又买来4块,现在我有11块糖,我吃了几块? 我们知道,原来的糖数-吃的糖数+又买来的糖数=现在的糖数。根据这一等量关系,设吃了ⅹ块糖,很容易列出方程:10-ⅹ+4=11 在生活中我们可以找到数学,因为数学和我们的生活是息息相关的,只要你是一个乐于观察的孩子,你一定会在数学的王国里找到乐趣。 泗洪县魏营镇中心小学 张菊杰
‘玖’ 一元一次方程如何找等量关系
怎样找等量关系
同学们在列方程解应用题时,总感觉方程比较难列.其实列方程解应用题的关键是找出等量关系,找出等量关系,方程也就可以列出来了.那么怎么找等量关系呢?
(1)抓住数学术语找等量关系
应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程,例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,四年级植树多少棵?”这道题的关键词是“比……少”,从这里可以找出这样的等量关系:四年级植树棵数的2倍减去4等于五年级植树的棵数,由此列出方程2
-4=50.
(2)根据常见的数量关系找等量关系
常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系.例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量=总价”的数量关系,可以列出方程36
=216.
(3)根据常用的计算公式找等量关系
常用的计算公式有:长方形面积=长×宽;可以根据计算公式找等量关系.例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?”根据长方形面积的计算公式“长×宽=面积”,可列出方程4
=19.
(4)根据文字关系式找等量关系
例如:“学校五年级一班有36人,二班有37人;一、二、三班共有108人,那么三班有多少人?”此题用文字表示等量关系是:
一班+二班+三班=总数
一班+二班=总数-三班
一班+三班=总数-二班
二班+三班=总数-一班
根据这些文字等量关系式,可列出以下方程,如:
36+37+
=108
36+37=108-
36+
=108-37
37+
=108-36
(5)根据图形找等量关系
例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图.
从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数.根据这个关系式,可列出方程70×3+2
=400.
常见等量关系式:
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者
和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或
小数+差=大数)
植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,
那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,
那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,
那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
生产问题:
单位时间生产量×生产时间=已生产量
原计划生产总量-已生产量=还要生产量
长度单位换算
1千米=1000米
1米=10分米
1分米=10厘米
1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000
千克
1千克=1000克
1千克=1公斤
‘拾’ 如何在方程中找等量关系
如何在方程中找等量关系
一、抓关键词
例1.甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需从乙队抽调多少人到甲队?
分析:在本题中抓住“2倍”便可发现相等关系:抽调后甲队人数=抽调后乙队人数×2.
评注:在解答应用时,若题目中出现诸如“几倍、共、多、少、快、慢、提前、超过、增加、相差”等关键词语时,应抓住它们进行分析,以使相等关系显现出来.
二、抓不变量
例2.某企业生产一种产品,每件成本是400元,销售价为510元,本季度销售m件.为了进一步扩大市场,该企业决定下季度销售价降低4%,预计销售数量提高10%,要使总的销售利润(销售利润=销售价—成本价)保持不变,该产品的成本价应降低多少?
分析:降低前与降低后的销售利润不变,这就是本题的相等关系.
评注:在解答应用题时,要注意分析找出不变量,即相等关系,如:两人由两地同时出发相向而行,相遇前的时间相等;等体积变形中的体积不变.
三、根据事理
例3.某项工作,甲单独完成需12天,乙单独完成需15天;若甲、乙合作若干天后,再由乙单独作6天完成,若再由甲单独完成需几天?
分析:这件工作是怎样完成