A. 怎样学好数学分析
一看到这个问题,同学们可能会说:学数学嘛,就是解题,题目做得越多,数学成绩就会越好。这种认识对不对呢?对,但不完全对。我们不妨留心一下自己周围的同学,思考这样一个问题:学校或班级里数学成绩优秀的同学,他们为什么成绩比自己好呢?如果自己的学习成绩就是班级或学校的尖子,那么也请总结一下:自己的学习成绩为什么总能领先于其他同学呢?是自己题目做得多吗?为什么有许多同学英语、语文成绩很不错,数学题目做得也不算少,但就是数学成绩不行呢?如果我们能进行这样的思考,那么很快就会发觉,这其中还有一个重要的因素在左右着我们的数学成绩的提高,那就是数学的学习方法。
数学是中小学的重要工具学科,许多同学由于没有正确掌握数学学习方法,有的负担很重但不得要领;有的陷入题海,茫茫然不知所措。因此在学习数学的时候,我们必须学会如何掌握数学知识?掌握数学技能,发展数学能力,以及养成良好的数学心理品质,从掌握数学学习方法进而形成综合学习的能力。下面我们一起来探讨一下数学学习中要注意的一些问题:
一、 扎实打好数学基础
初中数学的基础知识是指数学教材中的概念、法则、公式、定理等必学内容以及其中蕴含的数学思想方法,还包括学习数学的经验和解题的经验,具体是以下几个方面:
1.正确理解和掌握所学的基本概念、法则、公式、定理,把握他们之间的内在联系。
例如:分式 无意义,x的取值范围应为 。有的同学填x=3,这是错误的。因为这里有个概念,即分式无意义的概念和一个运算绝对值的法则,只有充分理解和掌握这一个概念和一个法则,才知道|x|-9=0,解出x=±3的正确答案。而且由于数学是一个连贯性很强的学科,正确掌握了绝对值以后会为我们初二学习二次根式、初三学习无理方程等打下良好的基础。因此,如果在学习某一内容或解一题时碰到了困难,那么很有可能就是因为有关的、以前的一些基本知识没有掌握好所造成的,因此要注意查缺补漏,找到问题及时解决,努力做到发现一个问题及时解决一个问题。只有基础扎实,我们成绩才会提高。
2.培养数学运算能力,养成良好的学习习惯。
每次考完试后,我们常会听到一些同学说:这次考试我又粗心了。而粗心最多的一种现象就是由于跳步骤产生的错误,并且屡错不改。这实际上是不良的学习习惯、求快心理造成的数学运算技能的不过关。要知道数学题的每一步都是符合一定的法则来完成的,如果在解题过程中忽视了某一步,那么就会发生这一步的法则没有正确的运用,进而产生错解。因此,运算能力的提高从根本上说是要弄懂“算理”,不仅知道怎样算,而且知道为什么这样算,从而把握运算的方向、途径和程序,一步一步仔细完成,形成准确快捷的运算能力。同学们要注意,如果你有上述类似跳步的现象应及时改正,不然长期下去,你会有一种恐惧心理,还没有开始解题就已经担心自己会做错,这样就会错得越多。有这样感受的同学必须迅速走出误区,学习的效率才有渐长的可能。
3.要学会一些必要的检验手段,培养自己的求异思维。
中国有句老话:“百密一疏”。疏漏是难免的,如果有多种检验手段,那么就可以做到万无一失了。那么多种检验手段如何掌握呢?这就需要我们在平时学习中有意识的训练自己的求异思维。如若数学问题要求解答的不是计算结果,而且寻求解决的方法或途径,其可运用的方法不是一种,解决的途径不止一条,而可有多种多条解答的方式,则不一定相同而是相异的答案。这种情况则属于求异思维的运用。例如:把正方形四等分,同学们在等分时多为这些方法:把它分成四个相等的小正方形或者是把它分成四个全等的等腰直角三角形,我们应该问自己还有吗?决不可以满足找出一种或两种,就认为大功告成,实际上它的方法还有好多。你能找到吗?这就是求异思维,平时有很多题目,虽然他只有一个答案,但是如果我们考虑用多种方法去解决他的话,对于我们创造性思维的发展是十分有利的。
二、 逻辑思维能力的培养
在数学中,一个数学概念的形成,一个数学命题的建立,一个题目的解答通常要经过对概念、命题或题目进行观察、比较、分析、综合、概括、抽象、归纳、演绎的过程,这些都需要在头脑里进行思维活动,并能正确的阐述自己的思想和观点,这就是逻辑思维能力,为了提高自己的逻辑思维能力,同学们应做到以下几点:
1.严格遵守思维规律,养成严谨的思维习惯。
严格遵守思维规律,推理严谨,言必有据,这是逻辑思维的核心。这首先要求我们要准确的使用概念、定义或定理、公式,能符合逻辑的判断。我们常会碰到这样的情况,当我们在证明两角相等的时候,有一种方法叫“等边对等角”。如果我们没注意到它的前题条件是在同一三角形中的话,那么就会产生错误,或者当解不出题时就乱做一通,出现偷换命题、假选论据、自相矛盾、循环论证等这样一系列的问题,为了防止这类现象的发生,我们必须在平时的学习中严格思维规律,严格按照正确的思维方法解题,对学习中出现的错误,要严格对待、决不马虎,培养自己严谨求实的思维习惯。
2.重视知识的获取过程,培养抽象、概括、分析综合、推理证明能力。
老师上课在讲解公式、定理、概念时,一般都揭示他们的形成过程,而这个过程却又是同学们最容易忽视的,认为:我只需听懂这个定理本身到时会用就行了,不需要知道他们是怎么得出的。这样的想法是不对的。因为老师在讲解知识的形成,发生的过程中,讲解的就是问题的一个思维过程,揭示的是问题解决的一种思想和方法,其中包含了抽象、概括分析、综合、推理等能力。如果我们不重视的话,实际就失去了一次从中吸取经验,锻炼和发展逻辑思维能力的机会。以上是数学学习的一些方法,供同学们参考。
数学成绩的提高,数学方法的掌握都和同学们良好的学习习惯分不开的,因此在最后我们再一起探讨一下数学的学习习惯。
良好的数学学习习惯包括:听讲、阅读、探究、作业。
听讲。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。
阅读。阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题还应与同类参考书联系起来一同学习,博采众长,增长知识,发展思维。
探究。要学会思考,在问题解决之后再探求一些新的方法,学会从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律。
作业。要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学。赞同0| 评论
B. 怎样快速学好数学分析
数学分析的特点是估计、近似、极限。这与中学的数学研究方法差别很大,让很多学生感到不适应。解决办法是,通过习题,来掌握这些方法。数学分析的概念不多,难点就是解题的思路,定理的结论都很好记,证明过程却非常困难。这就要求我们从一开始就要学好极限的概念,估计的方法,看似近似实则精确的思想。至于说快速,实际上和你的理解能力有关。理解不上去,速度快也没有用,考试依然会错。例题和习题是助于理解的最好手段。
C. 如何学好数学分析
数学分析是数学系学习的基础课程,根据我个人学习过数学分析的经验来说,学好数学分析1、这要求课前预习,否则不一定跟得上课堂进度;
2、要充分利用课堂教学资源,课上要认真记笔记;
3、课后要重点理解和记忆基础的定义和定理,如果要考研,证明也要掌握;
4、适度刷题,主要掌握课后习题就好,有余力的话一定要做吉米多维奇习题集,这是学数学分析的经典练习。
D. 如何学好数学分析求详答
除了一般的学习方法外,推荐你做做吉米多维奇的习题集。图书馆就有。
当年苏联那么猛,就是因为出了一批数学家,吉米多维奇就是之一。他的关于微积分的习题集能够让你把数学分析能涉及到的题目做个差不多。
另外,建议你把课本习题好好做一下,独自完成,不留死角。
大学时候参加数学竞赛,数学建模竞赛很锻炼人(而且加分很高,对于拿奖学金很有用)。。。。保研的时候这个东西挺重要。。
祝:满分
E. 数学分析怎样才能学好
《数学分析》课程是一门面向数学类专业的基础课。学好数学分析(和高等代数)是学好其他后继数学课程如微分几何,微分方程,复变函数,实变函数与泛函分析,计算方法,概率论与数理统计等课的必备的基础。
作为数学系最重要的基础课之一,数学科学的逻辑性和历史继承性决定了数学分析在数学科学中举足轻重的地位,数学的许多新思想,新应用都源于这坚实的基础。数学分析出于对微积分在理论体系上的严格化和精确化,从而确立了在整个自然科学中的基础地位,并运用于自然科学的各个领域。同时,数学研究的主体是经过抽象后的对象,数学的思考方式有鲜明的特色,包括抽象化,逻辑推理,最优分析,符号运算等。这些知识和能力的培养需要通过系统、扎实而严格的基础教育来实现,数学分析课程正是其中最重要的一个环节。
我们立足于培养数学基础扎实,知识面宽广,具有创新意识、开拓精神和应用能力,符合新世纪要求的优秀人才。从人才培养的角度来讲,一个学生能否学好数学,很大程度上决定于他进大学伊始能否将《数学分析》这门课真正学到手。
本课程的目标是通过系统的学习与严格的训练,全面掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。
微积分理论的产生离不开物理学,天文学,几何学等学科的发展,微积分理论从其产生之日起就显示了巨大的应用活力,所以在数学分析的教学中,应强化微积分与相邻学科之间的联系,强调应用背景,充实理论的应用性内容。数学分析的教学除体现本课程严格的逻辑体系外,也要反映现代数学的发展趋势,吸收和采用现代数学的思想观点与先进的处理方法,提高学生的数学修养。复旦大学有非常好的生源,吸引了众多优秀的学生,使得实现这一培养目标与要求成为可能。
另一方面,许多优秀的学生受教学计划限制,学习的是《高等数学》这一课程。但他们对于学习《数学分析》以提高自己的数学修养有着强烈的愿望(其中一部分通过转专业成为数学类专业的学生)。我们推出的《数学分析原理》课程应运而生,为这一部分学生提供了一个恰当的学习提高机会。
F. 怎样学好数学分析
一、 首先要改变观念。
初中阶段,特别是初中三年级,通过大量的练习,可使你的成绩有明显的提高,这是因为初中数学知识相对比较浅显,更易于掌握,通过反复练习,提高了熟练程度,即可提高成绩,既使是这样,对有些问题理解得不够深刻甚至是不理解的。例如在初中问|a|=2时,a等于什么,在中考中错的人极少,然而进入高中后,老师问,如果|a|=2,且a<0,那么a等于什么,既使是重点学校的学生也会有一些同学毫不思索地回答:a=2。就是以说明了这个问题。
又如,前几年北京四中高一年级的一个同学在高一上学期期中考试以后,曾向老师提出“抗议”说:“你们平时的作业也不多,测验也很少,我不会学”,这也正说明了改变观念的重要性。
高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究。
二、提高听课的效率是关键。
学生学习期间,在课堂的时间占了一大部分。因此听课的效率如何,决定着学习的基本状况,提高听课效率应注意以下几个方面:
1、课前预习能提高听课的针对性。
2、预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺。
3、听课过程中的科学
首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、打牌、激烈争论等。以免上课后还喘嘘嘘,或不能平静下来。
其次就是听课要全神贯注,全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。
耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,生动而深刻的接受老师所要表达的思想。
心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。
口到:就是在老师的指导下,主动回答问题或参加讨论。
手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解。
若能做到上述“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。
4、特别注意老师讲课的开头和结尾。
老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。
5、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。
此外还要特别注意老师讲课中的提示,老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。
最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。
三、做好复习和总结工作。
1、做好及时的复习。
(1)上完课的当天,必须做好当天的复习。
(2)复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
2、做好单元复习。
学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。
3、做好单元小结。
单元小结内容应包括以下部分。
(1)本单元(章)的知识网络;
(2)本章的基本思想与方法(应以典型例题形式将其表达出来);
(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
四、关于做练习题量的问题
有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。当然没有一定量(老师布置的作业量)的练习就不能形成技能,也是不行的。
另外,就是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。
最后想说的是:“兴趣”和信心是学好数学的最好的老师。这里说的“兴趣”没有将来去研究数学,做数学家的意思,而主要指的是不反感,不要当做负担。“伟大的动力产生于伟大的理想”。只要明白学习数学的重要,你就会有无穷的力量,并逐步对数学感到兴趣。有了一定的兴趣,随之信心就会增强,也就不会因为某次考试的成绩不理想而泄气,在不断总结经验和教训的过程中,你的信心就会不断地增强,你也就会越来越认识到“兴趣”和信心是你学习中的最好的老师.
G. 怎么样更有效学好数学分析
关于如何学好《数学分析》
一、如何听课
大学课程课堂教学学时一般比较少,一节课的知识容量较大,讲课的节奏也较快,如何有效地掌握课堂教学内容,提几点建议:
1、课前预习
适当预习,可使听课有的放矢、重点、难点明确,从而提高听课效率。预习的目的不是看懂全部内容(当然,能看懂的决不放过),主要是要对教材的内容有一个大概的了解,要了解预习内容需要已学过的那些知识,是否掌握,那些内容能看懂,那些看不懂,并对各种情况用不同的标记标出,以便在听课时分别弄懂。
2、听懂概念是重点
要了解概念的来龙去脉,搞清各概念间的关系,尤其是教师强调的地方,要引起注意,这往往是容易出错的地方。
3、不要拘泥于细节
听定理证明讲授时,要听其证明的思路和方法,注意教师的分析,而不要过于拘泥证明过程中的每一个细小步骤,但对主要步骤要听懂,下课之后再自行补充,更不要在某一地方卡住之后,中止听课。
4、要学会合理安排听课的精力和体力
整堂课上精力集中做不到,建议同学们把主要精力放在概念讲述,定理证明方法,易出错的地方的介绍等。
5、要养成听课记笔记的习惯
在听课的同时做好笔记,这对集中注意力听好课以及复习巩固听课内容、掌握知识要点,培养独立思考深入钻研的良好学风,扥都有一定的作用。
二、如何看书
大学的学习主要靠自学,而看书是自学的重要的环节,若仅把书上的那些简洁的不能再简洁的文字、符号,由此及彼看懂了,是起不到看书的作用,达不到看书的目的,学不好数学。对此,尽管是老生常谈,但强调几点:
1、多则惑,少则得。建议在读书中始终抓住每一节、每一章的几个主要概念、定理,尝试着用它们派生其它概念与结论,这即为常说的,把书读“薄”,将知识分类、浓缩。
2、加进去,写出来。书读薄后,应尝试把它变“厚”,这就是说,把你的体会,从别的书上学来的例子、新的证明方法加进去,使之丰富起来,使书变成像你“写出来”的一样。这一过程是读书的高级阶段,常常要去猜想、去探索,是真正学习数学方法,掌握数学技巧的主要来源。
3、合理选择参考书。建议同学们,要适当的阅读参考书,选定一本你认适合自己的数学分析辅助读物作为重点参考书,对提高学习效果不无益处。
三、关于做题
要学好数学分析,最好的办法莫过于经常动手去做题。解题能力的培养在数学分析学习中占有很重要的地位,这一点要特别提醒大家,有的同学做题时眼高手低,根源在此。
1、对概念题的练习应该受到重视,建议多花点时间;
2、对基本的运算题应多练习,并注意准确性与速度,少看书后的参考答案,有时参考答案也不是百分之百正确,靠答案的辅助提示做题容易在考试时栽根斗;
3、对做错的题,不要轻易放过,找出原因,引以为戒;
4、切记眼高手低,数学分析证明题多,详细写出解答过程,这样可以训练语言组织和表达能力;
5、当你做完一道题之后,请思考以下几个问题:
① 该题主要检测那方面的概念和知识;
② 部分地改变题目的条件,能得出什么新结论;
③ 该题的解答方法是否具有普遍性,是否能成为一种程序化解题方法;
④ 解题中所用的技巧是如何想出来的。
学习是一种复杂的脑力劳动,要想在学习上取得进步,理想、勤奋、毅力、方法缺一不可。理想是力量的源泉,勤奋是取得成功的前提,毅力是克服困难的关键,方法选择正确,事半功倍,方法不当事倍功半。我们说,对学习目的明确,学习态度端正的同学,要想少走弯路,提高学习效果,关键是讲究学习方法。
H. 数学分析怎样才能学好啊 题目都不会做。。
感觉什么都没学到是许多大一学子常有的现象,这实则是未入门的表现,也有学生会感觉这些东西很简单,没什么,就是……这些其实都是未入门的表现。对于要把注意重点从高中数学中以重复性操练为基础的常规解题训练转移到作为真正数学的智力体操上来,许多学生毫无准备。没能及时转变,以至于浑浑噩噩的度过着!高中数学的思想相比大学来说是很浅薄的,也就是基本原理很简单,所以高中生几乎不怎么管课本,而大学数学则完全不同,你要是能把课本上的内容思想领会透彻,就相当不简单了,这也是最为关键的。如果没把书本领会到一定程度,只是依葫芦画瓢的做了些习题,那就会一学便忘! 大学数学就是一种思想,要学会思考,思考是最重要的,要读懂每个章节所要表达什么思想,比如你要理清楚这个章节有哪些定义定理,这些定义都说了些什么,这些定理所要表达的又是什么,是从哪个推往哪个,怎么推导的,这些定理又该怎么运用……等等问题。如果没有充分细致的思考,只是一味的刷题,依葫芦画瓢,是不会学到什么实质性的东西的!
拿到题目脑子里一片空白,不知道怎么下手,是因为你没能把书上的概念理论装进脑海。书上的内容你完全记不住,其实是因为你没懂,没领会书上的基本概念,理论逻辑等,那些东西是无论怎么背都背不住的,只有真正理解领会,才能记住,相反,如果你真正领会了,再想忘记都难。
我希望你能冷静下来,因为你的这种现象可以说是很多大一数学学子共有的,而很多人选择了放弃,但你却没有,所以你至少还是很有希望的,只要你重新振作起来,一切都会好起来。永不服输!
说了这么多,那么你具体应该怎么做呢?其实很简单,着需要你作出转变,即改变自己的学习方式,我前面已经说了,要重视课本,所以,你以后要以课本为主,甚至不做题都行,只要真正掌握了课本,题目随便练练就没问题了。有一本好书也是很重要的,像复旦那本真心垃圾,如果想学好最好不要用那本,我推荐常庚哲史济怀的就是中科大的那本。在学习过程中,从最基本,最细致的地方开始,细嚼慢咽和走马观花绝对两种效果,尝试着把书上每句话都琢磨透彻,把每个证明都琢磨透彻,检验的标准就是,你是否可以不看书把他们全写出来。
你现在已经落下不少了,我建议你先把分析基础,即极限那一部分把它搞好,再回到目前的进度上来,因为,整个数学分析可以说就是各种各样的极限,它贯穿着整个数分。
最后,祝成功。
I. 数学分析怎样才能学好
第一个是“极限”的概念,也就是“ ”必须学得很好,一开始“细抠”,也就是说必须严格按照这个定义来,这样你就能避免“为什么这个需要证” ,“为什么这个证明起来那么麻烦”这种问题。
第二个:摧毁自己的三观。 多看一些反例:连续但是不可导的,原函数存在但是黎曼不可积的,处处不连续的函数,处处连续但是处处不单调的函数,处处连续但是处处不可导的函数,处处可导但是处处不单调的函数。 只要知道这些深井冰一样的函数存在,你做证明的时候就”不敢随意“了。欢迎看 《实分析中的反例》,这实在是一个函数的精神病院。
第三:做题适量,几米多维奇别刷,效率太低,可以做一些精简版本的,理解第一,然后才是计算。别动不动就把极限和积分交换了,别动不动就把两个极限交换了。 别什么函数都敢泰勒展开。我觉得裴礼文的《数学分析中的典型例题》比较好,但是难度有点大。 初学者也别看什么rudin,把自己玩死没意思。有一套三卷的“俄罗斯数学教材选译”《微积分学教程》(by 菲赫金哥尔茨)(说是微积分,但是严格性是足够的),写得比较朴实无华,适合入门,内容多,看的时候可以省略自己不敢兴趣的部分。我大一还在物理系的时候看的就是这套,然后到数学系又看了一次rudin的《数学分析原理》,我觉得rudin最好第二次学(复习的时候)看。还有,如果对怎么算积分有兴趣,可以看一个书:
Paul J. Nahin Inside Interesting Integrals
第四:题目还是要做的,学数学也怕那种自认为学懂的情况,很多知乎上的高中生就自称学会了数学分析。为了检验自己,课后习题还是要做的,至少做对80%-90%才可以,多做一些理解/证明的题目,计算题适量做。就算做不出来也要问人,不可以为了学习速度放弃质量,最后的结果就是坑死自己。