1. 怎样总结数学解题方法
总结贵在发现共性问题,找到联系,站在高点看问题就能有广阔的思路。总结得再细致而不能建立起知识之间的联系就难以应用。你这样总结会得到很厚的一本,而考试时能及时出现的思路绝不是把每种题型过一遍。细致总结是手段,得到内在联系是目的。
2. 高中数学要怎么总结解题方法
高中数学解题思路与技巧总结
(1)函数
函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
(2)方程或不等式
如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
(3)初等函数
面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
(4)选择与填空中的不等式
选择与填空中出现不等式的题目,优选特殊值法;
(5)参数的取值范围
求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
(6)恒成立问题
恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
(7)圆锥曲线问题
圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
(8)曲线方程
求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
(9)离心率
求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
(10)三角函数
三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
(11)数列问题
数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
(12)立体几何问题
立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;
(13)导数
导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
(14)概率
概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;
(15)换元法
遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;
(16)二项分布
注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;
(17)绝对值问题
绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;
(18)平移
与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;
(19)中心对称
关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
六种解题思路:
1.函数与方程思想
函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
2.数形结合思想
数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。
解题类型
(1)“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
(2)“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
(3)“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
3.分类讨论思想
分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。
解决分类讨论问题的关键是化整为零,在局部讨论降低难度。
常见的类型
类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;
类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;
类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;
类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。
类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。
4.转化与化归思想
转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。
转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。
常见的转化方法
(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;
(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;
(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;
(4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;
(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;
(6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;
(7)坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。
5.特殊与一般思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
6.极限思想
极限思想解决问题的一般步骤为:
一、对于所求的未知量,先设法构思一个与它有关的变量
二、确认这变量通过无限过程的结果就是所求的未知量
三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
掌握数学解题思想是解答数学题时不可缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以归纳总结,以便在考试中游刃有余。
3. 数学思想方法总结
数学思想是对数学知识的本质认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想。常见的数学思想包括化归思想、分类思想、分类思想、模型思想、极限思想、统计思想、最优化思想等。数学方法是从数学角度提出问题、解决问题的过程中所采用的各种方式、手段、途径等。数学思想和数学方法是紧密联系的,一般来说,强调指导思想时称数学思想,强调操作过程时称数学方法。一般情况下数学思想与数学方法不加以区分,统称为数学思想方法。在中学数学中常用的有数学归纳法、反向归纳法、不完全归纳法、类比法、分析法、综合法、递推法、待定系数法、数形结合法、补集法等数学方法。
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10.客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法
4. 数学学习过程比较有效的方法总结500字
学习数学,重要的是理解,而不是像其它科目一样死背下来.数学有一个特点,那就是‘‘举一反三”.做会了一道题目,就可以总结这道题目所包含的方法和原理,再用总结的原理去解决这类题,收效就会更好.学习数学还有一点很重要,那就是从基本的下手,稳稳当当的去练,不求全部题都会做,只求做过的题不会忘,会用就行了.在做题的过程中,最忌讳的就是粗心大意.往往一道题目会做,却因粗心做错了,是很不值得的.所以在考数学的时候,一定不要太急,要条理清楚的去计算,思考;这样速度可能会稍慢,但却可以使你不丢分.相比之下,我会采取稍慢的计算方法来全面分析题目,尽量做到不漏.学习是一生的事情,不要过于着急,一步一个脚印的来,就一定会取得一想不到的效果.
我一直认为数学不是靠做题做出来的.方法永远比单纯做题更重要.在第二天讲课前,最好先预习一下.用笔划出不懂的地方.在老师讲课时认真听讲,并在原先预习时不懂的地方加以解释,写好步骤.在课上,有选择的听和记老师所讲的例题.首先要听懂,然后再记下些重要的步骤和方法以及易错的地方和自己不容易想到的地方.还有,重要的定理和结论一定要熟记.课后要善于总结本堂课的内容,并在脑中梳理自己不懂的但经老师讲后才明白的例题的步骤,梳理1至2遍.课后要按时完成作业.一般先看老师钩的题目,看完后再自己动手做一遍.至于那些老师没有钩的题目,可选择性的做一些.若想的时间太久,就需要‘‘放弃’’了.
数学的学习是一个积累和运用的过程,因此,学好数学的一个必要前提便是要注重平时的积累和运用。而在日常时对于数学的学习还是有许多方法的。
数学学习做题是极为必要的,因此做题之后的总结工作也是极为重要的,否则只能是杂而不精,无法将知识融会贯通,合理运用。总结工作具体而言我们可以这样做:一,常备改错本,将自己做错的题目摘录下来,并将自己的错误做法和正确的作法一同记录下来,,以此警惕自己;二,正确把握考点,抓好典型,以此举一反三,我们在做题的过程中应该对题目考察的知识点有一定的认识,不可盲目做题,在此过程中我们可以提取一些具有某知识点的典型考法的题目,将其拟于一个标题之下记录,以此不变而应万变;三,对于许多学有余力的同学而言,仅有以上两点,想要得到进一步的提高还是远远不够的,我们还需要对解题方法有一个思辩的理解,从许许多多
的解法中选取适于自己的解题方式,而对于一些灵活的题目而言,我们还应该在做题中对许许多多的情况进行总结,以便在考试中将方法灵活运用,防止死做与定性思维的产生。
以上是我在数学学习过程中的一些具体方法,仅供大家参考,若有不足,还请大家多提意见,互相讨论,共同进步。
数学是一们基础学科,我们从小就开始接触到它。现在我们已经步入高中,由于高中数学对知识的难度、深度、广度要求更高,有一部分同学由于不适应这种变化,数学成绩总是不如人意。甚至产生这样的困惑:“我在初中时数学成绩很好,可现在怎么了?”其实,学习是一个不断接收新知识的过程。正是由于你在进入高中后学习方法或学习态度的影响,才会造成学得累死而成绩不好的后果。那么,究竟该如何学好高中数学呢?以下我谈谈我的高中数学学习心得。
一、 认清学习的能力状态。
1、 心理素质。由于我们在初中特定环境下具有的荣誉感和成就感能否带到高中学习当中,就取决于我们是否具有面对挫折、冷静分析问题的办法。当我们面对困难时不应产生畏惧感,面对失败时不应灰心丧气,而要勇于正视自己,及时作出总结教训,改变学习方法。
2、 学习方式、习惯的反思与认识。(1) 学习的主动性。我们在进入高中以后,不能还像初中时那样有很强的依赖心理,不订学习计划,坐等上课,课前不预习,上课忙于记笔记而忽略了真正的听课,顾此失彼,被动学习。(2) 学习的条理性。我们在每学习一课内容时,要学会将知识有条理地分为若干类,剖析概念的内涵外延,重点难点要突出。不要忙于记笔记,而对要点没有听清楚或听不全。笔记记了一大摞,问题也有一大堆。如果还不能及时巩固、总结,而忙于套着题型赶作业,对概念、定理、公式不能理解而死记硬背,则会事倍功半,收效甚微。(3) 忽视基础。在我身边,常有些“自我感觉良好”的同学,忽视基础知识、基本技能和基本方法,不能牢牢地抓住课本,而是偏重于对难题的攻解,好高骛远,重“量”而轻“质”,陷入题海,往往在考试中不是演算错误就是中途“卡壳”。(4) 不良习惯。主要有对答案,卷面书写不工整,格式不规范,不相信自己的结论,缺乏对问题解决的信心和决心,遇到问题不能独立思考,养成一种依赖于老师解说的心理,做作业不讲究效率,心思不集中,学习效率不高。
二、 努力提高自己的学习能力。
1、 抓要点提高学习效率。(1) 抓教材处理。正所谓“万变不离其中”。要知道,教材始终是我们学习的根本依据。教学是活的,思维也是活的,学习能力是随着知识的积累而同时形成的。我们要通过老师教学,理解所学内容在教材中的地位,并将前后知识联系起来,把握教材,才能掌握学习的主动性。(2) 抓问题暴露。对于那些典型的问题,必须及时解决,而不能把问题遗留下来,而要对遗留的问题及时、有针对地起来,注重实效。(3) 抓解题指导。要合理选择简捷的运算途径,要根据问题的条件和要求合理地选择运算过程,抓住问题的关键突破口,提高自己的学习能力。(4) 抓思维训练。数学的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。我们在平时的训练中,要注重一个思维的过程,学习能力是在不断运用中才能培养出来的。(5) 抓45分钟课堂效率。我们学习的大部分时间都在学校,如果不能很好地抓住课堂时间,而寄希望于课下去补,则会使学习效率大打折扣。<BR>
2、 加强平时的训练强度。因为有些知识只有在解题过程中,才能体会到它的真正含义。因此,在平时要保持一定的训练度,适量地做一些有典型代表性的题目,弄懂吃透。
3、 及时的巩固、复习。在每学完一课内容时,可抽出5-10分钟在课后回忆老师在课堂上所讲的内容,细划分类,抓住概念及其注释,串联前后知识点,形成一个完整的知识网络。
最后,还想提出几点注意:1、提高数学学习能力是一个秩序渐进的过程,要防止急躁心理,贪多求快,囫囵吞枣。2、学习知识是一个长期的过程。如华罗庚提倡的“由薄到厚”和“由厚到薄”的学习过程,就是这个道理。我们要在以后的生活中加强对应用数学思维和创新思维的方法与能力的培养与训练,从长远出发,提高自己的学习能力。希望同学们能从中有所收获,改进自己的学习方法,提高自己的数学成绩!
数学是一们基础学科,我们从小就开始接触到它。现在我们已经步入高中,由于高中数学对知识的难度、深度、广度要求更高,有一部分同学由于不适应这种变化,数学成绩总是不如人意。甚至产生这样的困惑:“我在初中时数学成绩很好,可现在怎么了?”其实,学习是一个不断接收新知识的过程。正是由于你在进入高中后学习方法或学习态度的影响,才会造成学得累死而成绩不好的后果。那么,究竟该如何学好高中数学呢?以下我谈谈我的高中数学学习心得。
一、 认清学习的能力状态。
1、 心理素质。由于我们在初中特定环境下具有的荣誉感和成就感能否带到高中学习当中,就取决于我们是否具有面对挫折、冷静分析问题的办法。当我们面对困难时不应产生畏惧感,面对失败时不应灰心丧气,而要勇于正视自己,及时作出总结教训,改变学习方法。
2、 学习方式、习惯的反思与认识。(1) 学习的主动性。我们在进入高中以后,不能还像初中时那样有很强的依赖心理,不订学习计划,坐等上课,课前不预习,上课忙于记笔记而忽略了真正的听课,顾此失彼,被动学习。(2) 学习的条理性。我们在每学习一课内容时,要学会将知识有条理地分为若干类,剖析概念的内涵外延,重点难点要突出。不要忙于记笔记,而对要点没有听清楚或听不全。笔记记了一大摞,问题也有一大堆。如果还不能及时巩固、总结,而忙于套着题型赶作业,对概念、定理、公式不能理解而死记硬背,则会事倍功半,收效甚微。(3) 忽视基础。在我身边,常有些“自我感觉良好”的同学,忽视基础知识、基本技能和基本方法,不能牢牢地抓住课本,而是偏重于对难题的攻解,好高骛远,重“量”而轻“质”,陷入题海,往往在考试中不是演算错误就是中途“卡壳”。(4) 不良习惯。主要有对答案,卷面书写不工整,格式不规范,不相信自己的结论,缺乏对问题解决的信心和决心,遇到问题不能独立思考,养成一种依赖于老师解说的心理,做作业不讲究效率,心思不集中,学习效率不高。
二、 努力提高自己的学习能力。
1、 抓要点提高学习效率。(1) 抓教材处理。正所谓“万变不离其中”。要知道,教材始终是我们学习的根本依据。教学是活的,思维也是活的,学习能力是随着知识的积累而同时形成的。我们要通过老师教学,理解所学内容在教材中的地位,并将前后知识联系起来,把握教材,才能掌握学习的主动性。(2) 抓问题暴露。对于那些典型的问题,必须及时解决,而不能把问题遗留下来,而要对遗留的问题及时、有针对地起来,注重实效。(3) 抓解题指导。要合理选择简捷的运算途径,要根据问题的条件和要求合理地选择运算过程,抓住问题的关键突破口,提高自己的学习能力。(4) 抓思维训练。数学的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。我们在平时的训练中,要注重一个思维的过程,学习能力是在不断运用中才能培养出来的。(5) 抓45分钟课堂效率。我们学习的大部分时间都在学校,如果不能很好地抓住课堂时间,而寄希望于课下去补,则会使学习效率大打折扣。<BR>
2、 加强平时的训练强度。因为有些知识只有在解题过程中,才能体会到它的真正含义。因此,在平时要保持一定的训练度,适量地做一些有典型代表性的题目,弄懂吃透。
3、 及时的巩固、复习。在每学完一课内容时,可抽出5-10分钟在课后回忆老师在课堂上所讲的内容,细划分类,抓住概念及其注释,串联前后知识点,形成一个完整的知识网络。
最后,还想提出几点注意:1、提高数学学习能力是一个秩序渐进的过程,要防止急躁心理,贪多求快,囫囵吞枣。2、学习知识是一个长期的过程。如华罗庚提倡的“由薄到厚”和“由厚到薄”的学习过程,就是这个道理。我们要在以后的生活中加强对应用数学思维和创新思维的方法与能力的培养与训练,从长远出发,提高自己的学习能力。希望同学们能从中有所收获,改进自己的学习方法,提高自己的数学成绩
有的老师年纪很大,做题仍然很快,为什么呢?熟能生巧,那些老师还不如学生们聪明,但他们见过的题型太多了,已经在大脑中形成网状知识结构,遇到一个难题,能够迅速知道这个属于哪种题,需要考虑什么思路,你也是一样,多做不同的题型,看看每道题的答案是什么思路,总结一下这类题的通性,我相信你的基础都已经搞定就那么几个概念,关键就是做一些好题,别题海最重要的是知道方法,认真对答案,看解析,问老师,看看你为什么没想到,每种题都搜集一些不同的方法,你迟早会提高,别想一口吃成个大胖子,慢慢来。 学数学就得多练,练得多会的多,考试时见过类似的做题速度就快,高中数学不是靠现场发挥。做题时要准备错题本,最好是做卷子一定要成本的做,做完一本你就会有很多心得,感到自己实力有提升,实力的提升在于你从这卷子中整理出的错题,错题必须反复做,有的错题在你又做完一边后,你又有新的发现,每套卷子中都会有难题,每套卷子中整理出几道题,日积月累你就会把越来越多不会的题变为会的。 记住每到不会得题都要反复做,就像被英语单词一样,只有这样你才可能真正领悟其精髓,我用这种办法一年,做了8本卷子,当然还有老师的作业,最终我高考数学考了143分,虽然不是很高,但我已经知足了。祝你好运
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
有一部分同学会产生这样的困惑:“我在初中时数学成绩很好,可现在怎么了?”其实,学习是一个不断接收新知识的过程。正是由于你在进入高中后学习方法或学习态度的影响,才会造成学得累死而成绩不好的后果。那么,究竟该如何学好高中数学呢?以下是福州一中网校老师对高中数学的一些学习心得。
一、 认清学习的能力状态。
1、 心理素质。要勇于正视自己,不应灰心丧气,及时总结教训,改变学习方法。
2、 学习方式、习惯的反思与认识。
(1) 学习的主动性。高中学习不能有依赖心理,课前要预习,课时做到真正的听课。
(2) 学习的条理性。每学习一课内容时,要学会将知识有条理地分为若干类,剖析概念的内涵外延,重点难点要突出。
(3) 忽视基础。不能牢牢地抓住课本,而是偏重于对难题的攻解,好高骛远。
(4) 不良习惯。缺乏对问题解决的信心和决心,养成一种依赖于老师解说的心理。
二、 努力提高自己的学习能力。
1、 抓要点提高学习效率。
(1) 抓教材处理 (2) 抓问题暴露 (3) 抓解题指导 (4) 抓思维训练
(5) 抓45分钟课堂效率
2、 加强平时的训练强度。
3、 及时的巩固、复习。
最后,同学们在掌握学习方法的同时也需注意自身的心态,福州一中网校老师提出两点建议:(1)提高数学学习能力是一个秩序渐进的过程,要防止急躁心理,贪多求快,囫囵吞枣。(2)学习知识是一个长期的过程。如华罗庚提倡的“由薄到厚”和“由厚到薄”的学习过程,就是这个道理。我们要在以后的生活中加强对应用数学思维和创新思维的方法与能力的培养与训练,从长远出发,提高自己的学习能力。
希望同学们能从中有所收获,改进自己的学习方法,提高自己的数学成绩!
5. 数学教学法的研究方法
数学教学法目前较多是研究中小学数学教学法,高等学校数学教学法的研究还处于开创阶段。数学教学法既是一门理论学科,又是一门实践性很强的学科。它的研究方法一般有两种:①总结行之有效的先进的数学教学经验,上升到理论高度,而后用于指导数学教学实践。②针对目前仍存在的问题,开展调查研究,①总结行之有效的先进的数学教学经验,上升到理论高度,而后用于指导数学教学实践。②针对目设计解决问题的最佳具体方案,进行典型试验,再总结经验逐步推广,最后上升到理论。
6. 数学总结用什么方法来总结
我不知道你说的“数学总结用什么方法来总结”中的“总结”具体指什么?你后面的补充包括2个方面了,1是数学总结;2是做完题后的总结;
我先说2,做完题后的总结。做完一道题目,在最后需要对该题进行总结一下,那么,这时候的总结就是给出一个明确的答案或者说结论。比如,一道应用题,你解完后,应该回答问题提出的答案,通常有××的面积是××;所求的电阻××;经证明,等边三角形的重心、中心重合。
现在说1,如果是数学总结,我指的是做完题目或者听完课或者考试完了之后,需要做总结,那么,这个总结是学习经验的总结。要求如下:1、对一个具体问题的解答思路的理解和描述;2、通过这个描述归纳总结解答学习这一类型的题目的方法;3、通过学习某一类型的知识来探索学习数学的方法。
不知道这么说你能否接受!
7. 如何学好初二数学方法总结
首先,在平时的学习数学当中,事先需要在课前进行认真的预习.预习的目的呢,就是为了能够更好的在课堂上吸收老师所讲的知识,通过预习之后.我们把握的程度一般就在80%左右了.随后在预习当中,不懂的地方就要在课堂上解决.不会的地方需要注重的表明起来,之后会了就多做些例题进行巩固.
而且具体的预习方式方法如下:把整本书的题目先都做完,同时画出知识点的含义.这个过程大约在半个小时左右,如果在时间允许的状况之外,还可以先做一下会写的练习题,不会的空下,等到明天老师讲课的时候再做.
其次呢,在学习数学上是需要和练习题一起结合的,如果说你只在课堂上听课是没有用的.因为你虽然说你是听懂了,但是你做题还是不会的,所以数学注重的是做题,在听懂的基础上还是要多做些练习题的,因为练习题多做了.之后你的.能力才会慢慢的增强.如果说遇到了难题,不懂的题一定要提出来,不懂就问,不能把它咽下去,谁也不说,否则在考试的时候遇到这些题目,你依然不会.
然后呢,就是复习,写完作业之后呢,对于当天学的内容需要再看一遍,巩固一下基础知识.然后再买些练习册,或者是在网上搜一些题再做一下.这样有助于你数学成绩的提高.
8. 数学该怎么总结
按知识点总结
叫老师给你总结