‘壹’ 数学中相遇问题的公式是什么
(v1+v2)t=s
v1 、v2:相向而行各自的速度
t:相遇时间
s:相遇路程
‘贰’ 求数学两次相遇的公式(注意,是两次相遇不是一次的)小学水平,求大神解答
问题更明确一点,如果是求第二次的相遇时间,可以用总路程的3倍除以速度和。
‘叁’ 相遇时间怎么求
在不知道总路程只知道速度的情况下,不能求得相遇时间!
‘肆’ 相遇问题的六大公式是什么
一、相遇问题六大公式
1、相遇路程=速度和×相遇时间
2、相遇时间=相遇路程÷速度和
3、速度和=相遇路程÷相遇时间
4、相遇路程=甲走的路程+乙走的路程
5、甲的速度=相遇路程÷相遇时间 -乙的速度
6、甲的路程=相遇路程-乙走的路程
二、相遇问题
两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。相遇问题是研究速度,时间和路程三者数量之间的关系。它和一般的行程问题区别在:不是一个物体的运动,所以,它研究的速度包含两个物体的速度,也就是速度和。
(4)数学的相遇时间如何求扩展阅读:
行程问题分类
1、追及问题
两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。这类常常会在考试考到,是行程中的一大类问题。
2、相遇问题
多个物体相向运动,通常求相遇时间或全程。
3、流水行船问题
船本身有动力,即使水不流动,船也有自己的速度,但在流动的水中,或者受到流水的推动,或者受到流水的顶逆,使船在流水中的速度发生变化,而竹筏等没有速度,它的速度就是水的速度
4、火车行程问题
火车走过的长度其实还有本身车长,这是火车行程问题的特点。
5、钟表问题
时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
参考资料:相遇问题网络
‘伍’ 相遇时间怎么求
相遇问题基本公式
相遇路程÷(速度和)=相遇时间
(速度和)×相遇时间=相遇路程
甲的速度=相遇路程÷相遇时间-乙的速度
应用题解题思路:
(1)对应法对于由相关的——组或几组对应的数量构成的应题,可以找准题中“对应”的数量关系,研究其变化情况,以寻得解题途径。(如相遇问题)
(2)分解法有些复杂的应用题是由几道以上的基本应用题组复合而成的,在分析这类应用题时,可以将其分解成几道连续性的简单应用题(如分数应用题)
‘陆’ 一道初中数学,相遇时间到底怎么求
是选D吗?
‘柒’ 相遇时间的所有公式
什么意思没懂!
‘捌’ 相遇时间的公式
相遇问题的关系式是:
1、速度和×相遇时间=路程
2、路程÷速度和=相遇时间
3、路程÷相遇时间=速度和
解题思路和方法:简单的题目可直接利用公式,而复杂的题目变通后再利用公式。
例如:南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
解392÷(28+21)=8(小时)
答:经过8小时两船相遇。
(8)数学的相遇时间如何求扩展阅读:
解答这类问题,要弄清题意,按照题意画出线段图,分析各数量之间的关系,选择解答方法。相遇问题除了要弄清路程,速度与相遇时间外,在审题时还要注意一些重要的问题:是否是同时出发,如果题目中有谁先出发,就把先行的路程去掉,找到同时行的路程。
驶的方向,是相向,同向还是背向.不同的方向解题方法就不一样。是否相遇.有的题目行驶的物体并没有相遇,要把相距的路程去掉;有的题目是两者错过,要把多行的路程加上,得到同时行驶的路程。
‘玖’ 数学追击问题和相遇问题的公式是什么急需!
楼上的很好,很简练,我详细地说一下:
追击问题:追及时间=追及前距离/速度差
相遇问题:相遇时间=相遇前距离/速度和
对于复杂的行程问题,尝试用画线段图的方法求解
‘拾’ 相遇问题六大公式是什么
(一)相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
(二)追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
(10)数学的相遇时间如何求扩展阅读:
两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。相遇问题是研究速度,时间和路程三者数量之间的关系。
两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。相遇问题是研究速度,时间和路程三者数量之间关系的问题。它和一般的行程问题区别在:不是一个物体的运动,所以,它研究的速度包含两个物体的速度,也就是速度和。
相遇问题的关系式是:速度和×相遇时间=路程;路程÷速度和=相遇时间;路程÷相遇时间=速度和。
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。