① 数学史上的三次危机及如何化解
一、希伯斯(Hippasu,米太旁登地方人,公元前5世纪)发现了一个腰为1的等腰直角三角形的斜边(即根号2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的着名理论。相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希伯斯抛入大海。
解决:
1、伯内特解释了芝诺的“二分法”:即不可能在有限的时间内通过无限多个点,在你走完全程之前必须先走过给定距离的一半,为此又必须走过一半的一半,等等,直至无穷。
亚里士多德批评芝诺在这里犯了错误:“他主张一个事物不可能在有限的时间里通过无限的事物,或者分别地和无限的事物相接触,须知长度和时间被说成是“无限的”有两种涵义。
一般地说,一切连续事物被说成是“无限的”都有两种涵义:或分起来的无限,或延伸上的无限。因此,一方面,事物在有限的时间里不能和数量上无限的事物相接触。
另一方面,却能和分起来无限的事物相接触,因为时间本身分起来也是无限的。因此,通过一个无限的事物是在无限的时间里而不是在有限的时间里进行的,和无限的事物接触是在无限数的而不是在有限数的范围上进行的。
2、亚里士多德指出这个论证和前面的二分法是一回事,这个论证得到的结论是:跑得慢的人不可能被赶上。
因此,对这个论证的解决方法也必然是同一个方法,认为在运动中领先的东西不能被追上这个想法是错误的,因为在它领先的时间内是不能被赶上的,但是,如果芝诺允许它能越过所规定的有限的距离的话,那么它也是可以被赶上的。
3、亚里士多德认为芝诺的这个说法是错误的,因为时间不是由不可分的‘现在’组成的,正如别的任何量都不是由不可分的部分组合成的那样。亚里士多德认为,这个结论是因为把时间当作是由‘现在’组成的而引起的,如果不肯定这个前提,这个结论是不会出现的。
4、亚里士多德认为,这里错误在于他把一个运动物体经过另一运动物体所花的时间,看做等同于以相同速度经过相同大小的静止物体所花的时间,事实上这两者是不相等的。
二、微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻。
解决:经过柯西(微积分收官人)用极限的方法定义了无穷小量,微积分理论得以发展和完善,从而使数学大厦变得更加辉煌美丽!
三、罗素悖论:S由一切不是自身元素的集合所组成,那S包含S吗?用通俗一点的话来说,小明有一天说:“我正在撒谎!”问小明到底撒谎还是说实话。罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!
解决
1、排除悖论,危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”
1908年,策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。
2、公理化集合系统,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。
而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上着名的三大数学流派,而各派的工作又都促进了数学的大发展等等。
(1)彻底解决第一次数学危机是在什么世纪扩展阅读:
在类的公理体系中,有一些基本的概念是不加定义的,我们只能从其客观含义上给予解释,但这样的解释仅仅起到帮助理解这些概念。
数学中研究的任何一个客体对象都称为一个类。类的概念是没有任何限制。类与类之间可能存在着一种称为属于的关系,类A属于类B,此时也称类A是类B的一个元素(简称为元)。
我们可以把类理解成为是由若干元素组成的一个整体。一个类是否是另一个类的元素是完全确定的,这就是类元素的确定性。类A如果不是类B的元素,则称A不属于B。
② 第一次数学危机是怎么回事
第一次数学危机:无理数的发现
大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。 第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!
③ 数学的历史上,都经历过什么样的危机
三次数学危机
④ 历史上共有几次数学危机
数学史上的三次数学危机分别发生在公元前5世纪、17世纪、19世纪末,都是发生在西方文化大发展时期。因此,数学危机的发生,都有其一定的文化背景。 这三次数学危机分别是: 第一次:古希腊时代,由于不可公度的线段――无理数的发现与一些直觉的经验想抵触而引发的; 第二次:是在牛顿和莱布尼茨建立了微积分理论后,对无穷小量的理解未及深透引起的; 第三次:是当罗素发现了集合论中的悖论,危及整个数学的基础而引起的。 三次数学危机尽管当时对数学和哲学都造成了巨大的影响,给当时某个时期造成了某种困境,然而由于一直未妨碍数学的发展与应用。反而在困境过后去,给数学的发展带来了新的生机.... 危机的产生自然引起了人们的抵触和打击抹杀..但是真理是不可能被消除的.任何事物是无法阻碍其发展的
⑤ 完全彻底的解决第一次数学危机的是欧多克索斯的比例论还是戴德金分割
是希帕索斯悖论的提出与勾股定理
希帕索斯悖论的提出与勾股定理的发现密切相关。因此,我们从勾股定理谈起。勾股定理是欧氏几何中最着名的定理之一。天文学家开普勒曾称其为欧氏几何两颗璀璨的明珠之一。它在数学与人类的实践活动中有着极其广泛的应用,同时也是人类最早认识到的平面几何定理之一。在我国,最早的一部天文数学着作《周髀算经》中就已有了关于这一定理的初步认识。不过,在我国对于勾股定理的证明却是较迟的事情。一直到三国时期的赵爽才用面积割补给出它的第一种证明。在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。因而国外一般称之为“毕达哥拉斯定理”。并且据说毕达哥拉斯在完成这一定理证明后欣喜若狂,而杀牛百只以示庆贺。因此这一定理还又获得了一个带神秘色彩的称号:“百牛定理”。
毕达哥拉斯
毕达哥拉斯是公元前五世纪古希腊的着名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的着名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。
⑥ 第一次数学危机最终如何解决了
无理数的问题由毕达哥拉斯学派成员的学生欧多克斯(Eudoxus)提出新的比例理论而暂时消除危机。
芝诺的四条悖论在后来被亚里士多德等人成功解释完毕。
其中:1.伯内特解释了芝诺的“二分法”
2.亚里士多德指出第二条悖论证法和前面的二分法相同
3.亚里士多德认为芝诺的这个说法是错误的,因为时间不是由不可分的‘现在’组成的
4.亚里士多德认为,这里错误在于他把一个运动物体经过另一运动物体所花的时间,看做等同于以相同速度经过相同大小的静止物体所花的时间,事实上这两者是不相等的。
第一次数学危机,是数学史上的一次重要事件,发生于大约公元前400年左右的古希腊时期,自根号二的发现起,到公元前370年左右,以无理数的定义出现为结束标志。这次危机的出现冲击了一直以来在西方数学界占据主导地位的毕达哥拉斯学派,同时标志着西方世界关于无理数的研究的开始。
危机爆发
无理数的发现
古代数学家认为,这样能把直线上所有的点用完。但是,大约在公元前5世纪,毕达哥拉斯学派的希帕索斯发现了:等腰直角三角形的直角边与其斜边不可通约。新发现的数由于和之前的所谓“合理存在的数”——即有理数在学派内部形成了对立,所以被称作了无理数。希帕索斯正是因为这一数学发现,而被毕达哥拉斯学派的人投进了大海,处以“淹死”的惩罚。[2]
直角三角形的直角边与其斜边不可通约,这个简单的数学事实的发现使毕达哥拉斯学派的人感到迷惑不解。它不仅违背了毕达哥拉斯派的信条,而且冲击着当时希腊人持有的“一切量都可以用有理数表示”的信仰。所以,通常人们就把希帕索斯发现的这个矛盾,叫做希帕索斯悖论。[1]
不过存在另外一种说法称,据说, 正五边形的边与对角线之比二分之根号五是最先被发现的无理数。[3]
芝诺悖论
古希腊着名哲学家芝诺(约公元前490年~前425年)曾提出四条着名的悖论,也被如今的数学史界认定为引发第一次数学危机的重要诱因之一。
第一,“二分法”。
运动着的东西在到达目的地之前须先完成行程的一半,而在完成行程的一半后,还须完成行程的一半的一半……如此分割,乃至无穷,因而它与目的地之间的距离是无限的,永远也达不到目的地。
第二,“阿基里斯永远追不上乌龟”。
阿基里斯是希腊跑得最快的英雄,而乌龟则爬得最慢。但是芝诺却证明,在赛跑中最快的永远赶不上最慢的,因为追赶者与被追赶者同时开始运动,而追赶者必须首先到达被追赶者起步的那一点,如此类推,他们之间存在着无限的距离,所以被追赶者必定永远领先。
第三,“飞矢不动”。
任何物体都要占有一定的空间,离开自己的空间就意味着失去了它的存在。飞矢通过一段路程的时间可被分成无数瞬间,在每一瞬间,飞矢都占据着一个与自己大小相同的空间,由于飞矢始终在自己的空间之中,因而它是静止不动的。
第四,“运动场”。
有两排物体,大小相同,数目相等,一排从终点排到中间点,另一排从中间点排到起点,当它们以相同的速度作方向相反的运动时,就会在时间上出现矛盾。芝诺认为这可以证明一半的时间等于一倍的时间。
以上四条悖论从根本上挑战了毕达哥拉斯学派所一直贯彻的度量和计算方式。[4]
⑦ 数学史上第一次危机的克服
无 理 数 的 发 现 —— 第 一 次 数 学 危 机
大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!
⑧ 第一次数学危机怎样解决的
解决过程:约在公元前370年,柏拉图的学生攸多克萨斯(Eudoxus,约公元前408—前355)解决了关于无理数的问题。他纯粹用公理化方法创立了新的比例理论,微妙地处理了可公度和不可公度。
他处理不可公度的办法,被欧几里得《几何原本》第二卷(比例论)收录。并且和狄德金于1872年绘出的无理数的现代解释基本一致。21世纪后的中国中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
(8)彻底解决第一次数学危机是在什么世纪扩展阅读
第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。反之,数却可以由几何量表示出来。整数的尊崇地位受到挑战,古希腊的数学观点受到极大的冲击。于是,几何学开始在希腊数学中占有特殊地位。
同时也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。这是数学思想上的一次革命,是第一次数学危机的自然产物。