⑴ 什么是神经网络
这个其实你安静下来查查网络也挺快的,人讲的话漏洞还是蛮多的。神经网络可以想象成机器人脑。
尽量简单讲吧,神经网络的初衷是人希望计算机能模拟人的思维方式解决这些问题:
识别物体,识别数据类型——》进而做到预测物体发展,预测数据变化。比如预测股票,电影票房等等。
那人的思维方式是怎样的呢?是多维的网状的。比如,识别一个杯子只需要一瞬间,但你判断的过程是通过杯子的各种特征综合反映出来是一个杯子的。这种各种特征的综合反映就是神经网络的基本特点。
抽象一点,你输入一组能代表杯子的特征,经过神经网络的处理,它能告诉你这是一个杯子。神经网络就算成了。
其中,你输入的一组特征就是输入向量;
神经网络是由你自己设计的,包括层数和节点数,都是模拟人脑复杂程度的。解决什么样的问题,就用适当的复杂程度。
处理指的是各种函数。
最后能告诉你是个杯子,就算是输出了。
当然,神经网络并不是很准确的网络,因为这是和人自己对大脑的研究成正比的。但因为兼容性强,建模方便的特征,使神经网络的使用范围还是相当广的。希望没有误导你。
⑵ 神经网络是什么
神经网络是一种以人脑为模型的机器学习,简单地说就是创造一个人工神经网络,通过一种算法允许计算机通过合并新的数据来学习。
神经网络简单说就是通过一种算法允许计算机通过合并新的数据来学习!
⑶ 神经网络中的数学知识
高等代数,泛函分析,微分方程,拓扑---收敛判断\函数逼近\网络拓扑设计...
不要光看数学,还学一点逻辑学(对编程,管理和理解数学知识是有益的)
⑷ 关于遗传算法,模糊数学,神经网络三种数学的区别和联系
遗传算法是一种智能计算方法,针对不同的实际问题可以设计不同的计算程序。它主要有复制,交叉,变异三部分完成,是仿照生物进化过程来进行计算方法的设计。
模糊数学是研究现实生活中一类模糊现象的数学。简单地说就是像好与坏怎样精确的描述,将好精确化,用数字来表达。
神经网络是一种仿生计算方法,仿照生物体中信息的传递过程来进行数学计算。
这三种知识都是近40年兴起的新兴学科,主要应用在智能模糊控制上面。这三者可以结合起来应用。如用模糊数学些遗传算法的程序,优化神经网络,最后用神经网络控制飞行器或其他物体
⑸ 学习神经网络需要具备什么数学知识
掌握基本原理就可以,就是一种复杂的非线性关系
⑹ BP神经网络法属于哪一门学科
神经网络波及的范围很广,在分类识别问题上,在故障识别问题上,它是人工智能,不能定性理解为哪一学科
⑺ 神经网络 的四个基本属性是什么
神经网络的搭建,输入,隐藏与输出的设置。应用到遗传算法中,我们制定一个规则,什么样的坦克是好坦克:比如杀一个坦克+15,按存活时间+10,死亡后-25;这样判别优秀的坦克基因;然后遗传给下一代重新训练。应用越来越多,但都以战斗系统,自动优化路径为主要应用方向,缺少新的方向与研究内容。将遗传算法与宠物养成游戏相结合,不仅可以增加游戏可玩性,给游戏玩家带来新鲜的游戏体验,丰富游戏玩家渴求惊喜与刺激的游戏心理,又可以丰富遗传算法的应用领域与辐射面。将优质宠物模拟为食物,模仿鸟群吃食物的行为,每三名宠物为一个单位,构建排名二、三名的宠物向第一名求偶的路径,并在达到一定距离时发出摇尾巴的动作。第二三名宠物有概率和第一名的宠物繁衍出新的一代,不断迭代。在屏幕活动范围内,对靠近,对齐,避免碰撞的三个原则设置参数、权重,以此获取宠物下一时刻位置。
⑻ bp神经网络是数学吗
是一种算法,其中运到了一些数学方法和公式