导航:首页 > 数字科学 > 中学数学思想方法都有哪些

中学数学思想方法都有哪些

发布时间:2022-06-05 02:52:24

1. 中学数学有哪些数学思想方法

在中学数学中经常用到的基本数学方法,大致可以分为以下三类:
(1)逻辑学中的方法.例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色.
(2)数学中的一般方法.例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛.
(3)数学中的特殊方法.例如配方法、待定系数法、加减(消元)法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,我们不可等闲视之.

2. 初中数学常用思想方法有哪些

初中数学思想方法“思”是指学生思维。没有思维,就发挥不了学生的主体作用。在思维方法指导时,应使学生注意:(1)多思、勤思,随听随思。(2)深思,即追根溯源地思考,善于大胆提出问题(3)善思,由听和观察去联想、猜想、归纳(4)树立批评意识,学会反思。可以说“听”是“思”的基础,思是 听 的深化,是学习方法的本质的内容,会思维才会学习。“记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但效果不是很好,因此在指导学生作笔记时应要求学生:(1)记笔记服从听讲,要掌握记录时机;(2)记要点、记疑问、记解题思路和方法。使学生明确“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。课堂学习指导是学法中最重要的。同时还要结合不同的授课内容进行相应的学法指导。2数学思想方法一数集的每一次扩充都是解决实际问题和解决数学自身矛盾的需要。有理数概念的建立,有理数性质的介绍,有理数运算法则的规定,这一切都为同学们进一步学习代数做了必要的准备。同学们在学习有理数一章时,希望大家要有意识地培养自己逻辑推理能力,使自己会观察、比较、分析、综合、抽象和概括,会用归纳和类比的方法进行推理。另外要特别重视提高运算能力,有过硬的运算基本功。为此,不仅能根据法则、运算规律、公式等正确地进行运算,而且理解运算的算理,能够根据题目条件,使运算“合理、简捷、准确”。为了解决用算术方法解应用题的局限性,人们想出用字母表示未知数,把问题中的相等关系平铺直叙地用代数方程式表达出来。由于表示未知数的字母也是数,因此,它们也可以按照数的运算的通性、通法进行运算,从而求得未知数所应有的值。同学们要充分注意这一“历史性”的突破。为此,不仅要熟练掌握含数字的算术的变形和计算,更要切实掌握好含字母的代数式(目前主要是整式)的变形和计算,解方程的基本方法和步骤,这一切都是为列方程解应用题而展开的。通过列方程解应用题的学习,体会如何把实际问题抽象成数学问题,用方程思想处理数学问题,形成用数学的意识,培养我们自己分析问题和解决问题的能力。3数学思想方法二升入初中如果再沿用小学的学习方法和方式,显然无法适应。这时需要我们摆脱对老师的依赖,做到自主主动的学习。一是积极适应新的授课方式。初中往往集中讲解重点,难点,要点,而且每课内容多,信息量大,所以要上课用心听,用心记。积极适应新老师的授课方式,包括语音,板书,思路,要求等。同时还要勤学好问,主动接触老师。二是制定科学的学习计划,包括长期计划(比如期中期末要达到什么水平,各科的目标是什么)和短期计划,即周计划、日计划(比如,怎么按排自己的一天活动)。此外可以找个竞争对手来激励自己。三要摸索适合自己的学习方法。学习不能停留在被动听课和机械地做作业上,要用心学,主动学,优选学,特别要讲究方法,把握好预习,听课、复习、做作业四个方面。4数学思想方法三对于刚上初一的孩子,改变习惯是最困难也是最有必要的一步。很多家长片面地让孩子多关注知识点、请很多家教,可孩子的成绩却不见提高,这时就要思考一下,孩子的学习习惯是否成为了他成绩提升的拦路虎。好的习惯,大的方面应该包括课堂注意听讲、认真记笔记、每天和每周固定时间复习和预习、为学习做好规划等等,这些任务在老师和家长的督促下也能顺利做好。

3. 数学常用的数学思想方法有哪些

数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。

1.用字母表示数的思想:这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。

2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

3.转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

4.分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。

5.类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.

6.函数的思想 :辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。

7.方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,

(3)中学数学思想方法都有哪些扩展阅读:

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。

从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用。

4. 中学阶段的学生,应该掌握哪些数学思想呢

中学以后的数学会比较抽象,会有一些很多图形的公式以及图形的面积,周长计算,还有一些函数的基本接触。在初中以后需要加强空间感的培养,和它逻辑能力的转变,以及他的思考能力的训练。所以可以在平时要讲一些做题,尽量的熟悉掌握。而且要充分利用错题进行知识的总结归纳,做到仅1返3,这样才能够更将数学的基本知识全部掌握。

5. 初中数学学习有哪些思维方法可以推荐

初中数学教材中体现出的基本数学思想
数学思想方法是数学学科的精髓,是数学素养的重要内容之一,只有充分掌握领会,才能用效地应用知识,形成能力。那么,什么是数学思想呢?数学思想是指现实世界的空间形式和数量关系不反映到人的意识之中,经过思维活动而产生结果,是对数学事实与理论的本质认识。
初中数学整套教材涉及的数学思想三十多种,这里就几种主要的数学思想作一总结。
一、用字母表示数的思想,这是基本的数学思想之一
在代数第一册第一章“代数初步知识”中,主要体现了这种思想。例如:
设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的1/3与乙数的1/2差:1/3a-1/2b
二、数形结合的思想
“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。实中数学教材中下列内容体现了这种思想。
1、数轴上的点与实数的一一对应的关系。
2、平面上的点与有序实数对的一一对应的关系。
3、函数式与图像之间的关系。
4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。
5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。6、“圆”这一章中,贺的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。
7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。
三、转化思想
在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,它是数学基本思想方法之一。下列内容体现了这种思想:
1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。
2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。
3、“圆”这一章中,证明圆周角定理进所做的分析:证明弦切角定理的思路:求两圆的切线长的问题。这些转化都是通过辅助线来完成的。
4、把三角形或多边形中的某种线段或面积问题化为相似比问题来解决。
四、分类思想
集合的分类,有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关生活经验等都是通过分类讨论的。
五、特殊与一般化思想
1.“圆”这一章中,证明圆周角定理和弦切角定理时用的是特殊到一般的方法,而相交弦定理及其推论则是一般到特殊的思想运用。
2.“整式乘除”这一章,首先人数和的运算特例中,抽象概括出幂的一般运算性质。例:103 ×103 =(10×10×10)(10×10)=10×10×10×10=105 =103 + 2
a3 ??a3 =a3 + 2 am ??an am + n
乘法公式的推导则是采用一般到特殊的推导过程。
六、类比思想
1. 不等式的性质,一元一次不等式的解法等内容时多采取与等式的性质,一无一次方和的解法等做类比。
2. 通过有理数的相反数、绝对值、运算律等得到实灵敏的相反数、绝对值、运算律等知识。
3.
在二次根式加减的运算中,指出“合并同类二次根式与合并同类项”类似。因此,二次根式的加减可以对比整式的加减进行。
4.
“角的度量、角的比较大小、角的和、差及平他线”,可与线段的相关知识进行类比;度、分、秒的运算可与时、分、秒的运算进行类比。
5. 相似多边形的性质和相似三角形的性质类比。
七、数式通性
用数的运算所具有的性质,去控索式的同类运算是否也具有这样的性质,如具有,叫数式通性,整式的乘除这一章中,是由数的性质推知式的性质的;由数的国减推知式的加减的。
八、同类合并思想
这一思想在“整式的加减”这一章中的具体体现是合并同类项。“根式”这一章中的合并同类根式。
九、无逼近思想
在无限不循环小数以及用有理数逼近表示无理数时,体现了无限逼近的思想。
十、对称变换思想

根式乘法、根式除法、√a2 =a(a=0)等内容中,多次运用等价转化、对称变化,反用公式的

6. 初中数学学习思维方法都有哪些呢

一、掌握方法,培养能力。

学会学习,掌握学习规律和学习方法,以培养索取知识的能力,乃是当今青少年学习中十分重要的任务。只有凭借着良好的学习方法,才能达到“事半功倍”的学习效果。针对数学学习方法,需要注意“五要”、“五先”、“五会”:

五要:1、围绕老师讲述展开联想;2、理清教材文字叙述思路;3、听出教师讲述的重点难点;4、跨越听课的学习障碍,不受干扰;5、在理解基础上扼要笔记。

五先:1、先预习后听课;2、先尝试回忆后看书;3、先看书后做作业;4、先理解后记忆;5、先知识整理后入眠。

五会:1、会制定学习计划;2、会利用时间充分学习;3、会进行学习小结;4、会提出问题讨论学习;5、会阅读参考资料扩展学习。

二、学会思考,积极探究。

数学是思维的体操。学习离不开思维,数学更离不开思维活动。善思则学得活,效率高;不善思则学得死,效果差。可见,科学的思维方法是掌握好知识的前提。因此,在教学过程中老师对学生要进行思维的训练和指导,从而使学生学会思考探究。为此,教师应着力于做好以下工作:

1、从学生思维的“最近发展区”入手来开展启发式教学,培养学生积极主动思考,使学生会思考。

2、从创设问题情境来开展探索式教学,培养学生追根究底的思考习惯,使学生学会深思。

3、从挖掘“问题链”来开展变式训练,培养学生观察、比较、分析、归纳、推理、概括的能力,使学生学会善思。

4、从回顾解题策略、方法的优劣来开展评价,培养学生去分析,使学生学会反思。

还有就是我们在教学过程中还应善于暴露思维过程,留下一定的思维时间与空间,使学生“思在知识的转折点、思在问题的疑难处、思在矛盾的解决上、思在真理的探索中”,使学生达到融会贯通的境界。

三、多做习题,养成习惯。

要想学好数学,多做题目是难免的,以熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础。再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

四、有疑必问,提高效率。

有疑必问是提高学习效率的有效办法。学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂、没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次,从而提高学习效率。发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣,最后无法赶上步伐。

五、调整心态,正确对待。

应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目。而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。要调整好自己的心态,使自己在任何时候都镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

7. 中学数学中四种重要思想方法

函数思想。方程思想。分类讨论。转化思想

8. 数学基本思想方法有哪些

1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

3、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。

4、整体思想

从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。

5、类比思想

把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

9. 初中数学思想和方法有哪些

所谓数学思想方法是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,他在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想;是在数学地提出问题、解决问题(包括数学内部问题和实际问题)过程中,所采用的各种方式、手段、途径等。初中数学中常用的数学思想方法有:化归思想方法、分类思想方法、数形结合的思想方法、函数思想方法、方程思想方法、模型思想方法、统计思想方法、用字母代替数的思想方法、运动变换的思想方法等。

10. 初中数学思想方法有哪些

‘2.分类讨论思想所谓分类讨论是指对于复杂的对象,为了研究的需要.根据对象本质属性的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而认识整体的性质的思想方式。在分类讨论中要注意标准的同一性.即划分始终是同一个标准、这个标准必须是科学合理的;分域的互斥性.即所分成的各类既要互不包含.义要使各类总和等于讨论的全集;分域的逐级性,有的问题分类后还可在每,类中丙继续分类。运用分类讨论思想指导数学教学,有利于学生归纳、总结所学的数学知识,使之系统化、条理化.并逐步形成一个完整的知识结构网络,这有利于学生严密、清晰、合理地探索解题思路,提高数学思维能力。在初中数学中需要分类讨沦的问题主要表现个方而:(扮有的数学概念、定理的论证包含多种情况.这类问题需要分类讨论。如平面儿何中二角形的分类、四边形的分类、角的分类、圆周角定理、圆幂定理、弦切角定理等的证明,都涉及到分类i寸论(约解含字毋参数或绝对值符号的为一程、不等式、讨论算术根、正比例和反比例的数中二次项系数、,与图象的开l:]方向等,由于这些参数的取位不同或要去掉绝对值符号就有不同的结果.这类问题需要分类讨论(3)有的数学问题.虽结论惟一但导致这结论的前提不尽相同.这类问题也要分类讨论3一效形结合思想所谓数形结合是指抽象的数学语言与形象直观的图形结合起来.从而实现由抽象向具体转化的一种思维方式。着名数学家华罗庚说过:数缺形时不直观,形少数时难人微有些数最关系.借助于图形的性质,可以使许多抽象的概念和复杂的关系直观化、形象化、简单化,而图形的一些性质.借助于数量的计算和分析.得以严谨化。在初中阶段,数形结合的形可以是数轴、函数的图象和几何图形等等.它们都具有形象化的特点数形结合思想在初中数学中主要表现在以下两个方面;(l)以形助数,帮助学生深刻理解数学概念如教师可以用数轴上点和实数之间的对应关系来讲清相反数、绝对值的概念以及比较两个数大小的方法;运用函数图象的性质讨沦一元三次方程的根以及讨论一7乙一次小等式等等(2)以数助形,帮助学生简化解题方法。初中数学中还渗透了类比、归纳、联想等数学思想方法这些思想力一法之间,是相互渗透、互相促进的,在数学教学中要有机地结合起来

阅读全文

与中学数学思想方法都有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1423
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1006
武大的分析化学怎么样 浏览:1256
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1667
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1072