① 求概率密度问题 数学期望
分部积分而已。。
② 已知概率密度函数怎么求它的数学期望和方差
求方差要利用个公式,DX=EX^2-(EX)^2
期望EX=∫ f(x)*x dx
下面的积分区间都是-a到a 为了书写我就不写明了。
EX=∫ 1/2a *x dx =0
EX^2=∫ (1/2a)*x^2 dx=1/3 a^2
DX=EX^2-(EX)^2=(1/3)a^2
当然,对于一些常见分布的期望和方差可以直接背公式
请别忘记采纳,祝学习愉快
③ 已知数学期望和方差的正态分布,求概率
不用二重积分的,可以有简单的办法的。
设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]
其实就是均值是u,方差是t^2,网络不太好打公式,你将就看一下。
于是:
∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t。。。。。。(*)
积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域,所以略去不写了。
(1)求均值
对(*)式两边对u求导:
∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0
约去常数,再两边同乘以1/(√2π)t得:
∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0
把(u-x)拆开,再移项:
∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx
也就是
∫x*f(x)dx=u*1=u
这样就正好凑出了均值的定义式,证明了均值就是u。
(2)方差
过程和求均值是差不多的,我就稍微略写一点了。
对(*)式两边对t求导:
∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π
移项:
∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2
也就是
∫(x-u)^2*f(x)dx=t^2
正好凑出了方差的定义式,从而结论得证。
④ 求概率密度函数的期望值
你好!直接用积分如图计算Y的期望,需要分成两段计算。经济数学团队帮你解答,请及时采纳。谢谢!
⑤ 怎样求条件概率密度
条件概率密度=联合概率密度/边缘概率密度X的边缘密度:对y进行积分,被积函数是联合密度Y的边缘密度:对x进行积分,被积函数是联合密度积分区域的话,可以画出图来,就比较明了了。
对于连续型的随机变量,在一点处的取值概率为0,但是当这个问题出现在求条件概率密度时,思考的方向就变了,不能单纯的应用条件概率公式解题。
对于第三问如果你用条件概率公式
(5)怎么由数学期望求出概率密度扩展阅读:
密度公式顾名思义就是表示数据分布的密集程度。条件概率密度公式就是指在一定条件下,分布情况。
对于一维实随机变量X,设它的累积分布函数是FX(x)。如果存在可测函数fX(x),满足:那么X是一个连续型随机变量,并且fX(x)是它的概率密度函数。
连续型随机变量的确切定义应该是:分布函数为连续函数的随机变量称为连续型随机变量。连续型随机变量往往通过其概率密度函数进行直观地描述,连续型随机变量的概率密度函数f(x)具有如下性质:概率密度函数概率密度函数这里指的是一维连续随机变量,多维连续变量也类似。
随机数据的概率密度函数:表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。它随所取范围的幅值而变化。
⑥ 什么是数学期望如何计算
数学期望是试验中每次可能结果的概率乘以其结果的总和。
计算公式:
1、离散型:
离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:
⑦ 已知概率密度,求数学期望,题目如图
见图
⑧ 已知X的概率密度,求Y=G(X)的数学期望时为什么可以直接用X的概率密度而不用算Y的概率密度
用一个例子可以帮助理解.经济数学团队帮你解答.请及时评价.
⑨ 概率密度 数学期望 概率论 求解!!!
妹子,你这指甲油擦的。。。。
显然求出X的期望就可以做出来了,E(Y)=2E(X)+1 所以x的期望按照定义来就行啦
就是∫(0→π/2)【xcosx】dx 把cosxdx先变成dsinx 然后分部积分就可以了