㈠ 高等数学的极限定义是什么意思
设{Xn}为一无穷数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时的一切Xn,均有不等式|Xn - a|<ε成立,那么就称常数a是数列{Xn}的极限,或称数列{Xn}收敛于a。记为
lim Xn = a 或Xn→a(n→∞)
如果数列没有极限,就说数列发散。
补充:n应该是X的下角标,我在Word里修改了,弄过来又变了……
㈡ 数学的极限是什么
下面的回答来自http://ke..com/view/17644.htm
数列极限
定义
设|Xn|为一无穷数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时的一切Xn,均有不等式|Xn - a|<ε都立,那么就称常数a是数列|Xn|的极限,或称数列{Xn}收敛于a。记为 lim Xn = a 或Xn→a(n→∞) 如果数列没有极限,就说数列发散。
性质
1.唯一性:若数列的极限存在,则极限值是唯一的,且其子数列的极限与原数列的相等;
2.有界性:如果一个数列{xn}收敛(有极限),那么这个数列{xn}一定有界。 但是,如果一个数列有界,这个数列未必收敛。例如{xn}:1,-1,1,-1,……(-1)^n+1,……
3.保号性:如果一个数列{xn}收敛于a,且a>0(或a<0),那么存在正整数N>0,当n>N时,都有xn>0(或xn<0)。 4.收敛数列与其子列间的关系:(通俗讲:改变数列的有限项,不改变数列的极限。)如果数列{xn}收敛于a,那么它的任意子数列也收敛,且极限也是a。
常用数列的极限
当n→∞时,有 An=c 极限为c An=1/n 极限为0 An=x^n (∣x∣小于1) 极限为0
数列极限存在的充分条件
夹逼原理
设有数列{An},{Bn}和{Cn},满足 An ≤ Bn ≤ Cn, n∈Z*,如果lim An = lim Cn = a , 则有 lim Bn = a.
单调收敛定理
单调有界数列必收敛。[是实数系的重要结论之一,重要应用有证明极限 lim(1+1/n)^n 的存在性]
柯西收敛准则
设{Xn}是一个数列,如果任意ε>0, 存在N∈Z*, 只要 n 满足 n > N ,则对于任意正整数p,都有 |X(n+p) - Xn | < ε . 这样的数列{Xn}称为柯西数列, 这种渐进稳定性与收敛性是等价的。即互为充分必要条件。
函数极限
专业定义
设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε 那么常数A就叫做函数f(x)当 x→x。时的极限。
通俗定义
1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∞时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作limf(x)=A ,x→+∞。
2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。
函数的左右极限
1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a.
2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a.
注:若一个函数在x(0)上的左右极限不同则此函数在x(0)上不存在极限 一个函数是否在x(0)处存在极限,与它在x=x(0)处是否有定义无关,只要求y=f(x)在x(0)附近有定义即可。
两个重要极限
1、x→0,sin(x)/x →1
2、x→0,(1 + x)^1/x→e或 x→∞ ,(1 + 1/x)^x→e x→∞ ,(1 + 1/x)^(1/x) → 1 (其中e≈2.7182818...是一个无理数)
函数极限的运算法则
设lim f(x) ,lim g(x)存在,且令lim f(x) =A, lim g(x)=B,则有以下运算法则,
线性运算
加减: lim ( f(x) ± g(x) )= A ± B
数乘: lim( c* f(x))= c * A(其中c是一个常数)
非线性运算
乘除: lim( f(x) * g(x))= A * B lim( f(x) / g(x)) = A / B ( 其中B≠0 )
幂: lim( f(x) ) ^n = A ^ n
㈢ 数学上“极限”的概念是
如果用y=f(x)来表示某个函数,极限一般来说是讨论x趋向正无穷大、负无穷大时,y的取值。
比如说:y=f(x)=1/x
如果x向正无穷大跑,那么y的值会越来越小,最后y=0(当x趋于无穷大时)
如果x向负无穷大跑,那么y的值也会越来越小,最后y=-0,所以y=0
㈣ 如何理解极限定义
N是根据你的ε ,而假定存在的某一个数.在不等式中体现在只需要比N大的n这些Xn成立,比N小的不作要求.
比如:
序列:1/n
极限是0
如果取:ε =1/10
则N取10
收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
㈤ 数学极限是什么
楼上说的是不对的。
极限和无限是不同的。
无限只是一种趋势,而极限却是一个固定的数。
函数极限的一般概念:在自变量X的某个变化过程中,如果对应的函数值F无限接近于某个确定的数A,那么这个确定的数就叫做在这一变化过程中函数的极限.
无限接近的意思是,不管函数值F-A的差有多么小。总可以找到另外的X值,使他对应的函数值F-A的差更小。
㈥ 数学中的“极限”是什么意思这是一个名词还是动词是指一个变化过程吗
极限是一数学概念。
㈦ 数学中的极限是什么有什么实际作用
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
极限思想在现代数学乃至物理学等学科中,有着广泛的应用,这是由它本身固有的思维功能所决定的。
极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从“直线构成形”认识“曲线构成形”,从量变去认识质变,从近似认识精确。
“无限”与’有限‘概念本质不同,但是二者又有联系,“无限”是大脑抽象思维的概念,存在于大脑里。“有限”是客观实际存在的千变万化的事物的“量”的映射,符合客观实际规律的“无限”属于整体,按公理,整体大于局部思维。
微积分研究的对象是函数,研究的工具叫极限,极限的最实际的作用就是可以进行微积分,进而进行更高层次的研究,极限可以把很多看似不可能的东西合理化,比如无穷,无限逼近等等都可以在极限的框架下合理的运算和理解,其本质就是提出了一种很特殊的运算法则。
直到实数完备性被证明结束后,极限的意义才被进一步挖掘,即无穷逼近的合理性,由于实数的稠密性和无穷性,才让极限真正的被接受和理解。
个人的观点,极限做为一种运算方式,不仅拓宽了人类对于数字的概念,同样也改变了人们对无穷的理解,说简单点叫数学的突破,说高级一点就是让人类的数学往前跨了一大步,直接进入了合理的计算无穷得领域中,这对于物理学这种极端学科的影响是巨大的。
㈧ 什么是数学极限
无限接近,但永远取不到。