A. 中国数学家的名字
1.国际着名数学大师,沃尔夫数学奖得主,陈省身
1931年入清华大学研究院,1934军获硕士学位.1934年去汉堡大学从Blaschke学习.1937年回国任西南联合大学教授.1943年到1945年任普林斯顿高等研究所研究员.1949年初赴美,旋任芝加哥大学教授.1960年到加州大学伯克利分校任教授,1979年退休成为名誉教授,仍继续任教到1984年.1981年到1984年任新建的伯克利数学研究所所长,其后任名誉所长。陈省身的主要工作领域是微分几何学及其相关分支.还在积分几何,射影微分几何,极小子流形,网几何学,全曲率与各种浸入理论,外微分形式与偏微分方程等诸多领域有开拓性的贡献.陈省身本有极多荣誉,包括中央研究院院士(1948).美国国家科学院院士(1961)及国家科学奖章(1975),伦敦皇家学会国外会员(1985),法国科学院国外院士’(1989),中国科学院国外院士等。荣获1983/1984年度Wolf奖,及1983年度美国科学会Steele奖中的终身成就奖.
2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人 华罗庚
华罗庚是一位人生经历传奇的数学家,早年辍学,1930年因在《科学》上发表了关于代数方程式解法的文章,受到熊庆来的重视,被邀到清华大学学习和工作,在杨武之指引下,开始了数论的研究。1936年,作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应美国普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年开始,他为伊利诺伊大学教授。1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长、主席团委员等职。还担任过多届中国数学会理事长。此外,华罗庚还是第一、二、三、四、五届全国人民代表大会常务委员会委员和中国人民政治协商会议第六届全国委员会副主席。华罗庚是在国际上享有盛誉的数学家,他的名字在美国施密斯松尼博物馆与芝加哥科技博物馆等着名博物馆中,与少数经典数学家列在一起。他被选为美国科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。又被授予法国南锡大学、香港中文大学与美国伊利诺伊大学荣誉博士。华罗庚在解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域中都作出卓越贡献。由于华罗庚的重大贡献,有许多用他他的名字命名的定理、引理、不等式、算子与方法。他共发表专着与学术论文近三百篇。华罗庚还根据中国实情与国际潮流,倡导应用数学与计算机研制。他身体力行,亲自去二十七个省市普及应用数学方法长达二十年之久,为经济建设作出了重大贡献。
3.仅次于哥德尔的逻辑数学大师,王浩
1943年于西南联合大学数学系毕业。1945年于清华大学研究生院哲学部毕业。1948年获美国哈佛大学哲学博士学位。1950~1951年在瑞士联邦工学院数学研究所从事研究工作1951~1953年任哈佛大学助理教授。1954~1961年在英国牛津大学作第二套洛克讲座讲演,又任逻辑及数理哲学高级教职。1961~1967 年任哈佛大学教授。1967年后任美国洛克斐勒大学教授,主持逻辑研究室工作。1985年兼任中国北京大学名誉教授。1986年兼任中国清华大学名誉教授。50年代 初被选为美国国家科学院院士,后又被选为不列颠科学院外国院士,美籍华裔数学家、逻辑学家、计算机科学家、哲学家。
4.着名数学家力学家,美国科学院院士,林家翘
1937年毕业于清华大学物理系。1941年获加拿大多伦多大学硕士学位。1944年获美国加州理工学院博士学位。1953 年起先后担任美国麻省理工学院数学教授、学院教授、荣誉退休教授。 林家翘教授曾获:美国机械工程师学会Timoshenko奖,美国国家科学院应用数学和数值分析奖,美国物理学会流体力学奖。他是美国国家文理学院院士(1951),美国国家科学院院士(1962),台湾“中央研究院”院士(1960)。从40年代开始,林家翘教授在流体力学的流动稳定性和湍流理论方面的工作带动了整整一代人在这一领域的研究探索。从60年代开始,他进入天体物理的研究领域,开创了星系螺旋结构的密度波理论,并为国际所公认。1994年6月8日当选为首批中国科学院外籍士。
5.我国泛函分析领域研究先驱者,曾远荣
1919年入清华学校(清华大学前身)留美预备部,一直读到1927年7月。由于学习成绩优异,先后在美国芝加哥大学,普林斯顿大学及耶鲁大学学习并研究数学,1933年取得博士学位。1934年8月至1942年7月一直任教于清华大学(1938年与北京大学、南开大学在昆明组成西南联合大学)。1950年2月,受国立南京大学数学系系主任孙光远教授写信聘请到南京大学任教直至退休,曾在南京大学建立国内最早的计算数学专业。长期从事泛函分析研究,是我国开展这一领域研究的先驱者之一,在广义逆等研究领域成就卓着。
6.我国最早提倡应用数学与计算数学的学者,赵访熊
1922年考取北京清华学校。当时清华学校是公费留美预备学校,竞争激烈,在江苏只招3名学生,他在众多考生中名列榜首。毕业后即到美国麻省理工学院(MIT)电机系学习。他1930年在电机系毕业,被哈佛大学数学系录取为研究生,且于1931年获硕士学位。1933年他受聘回国在清华大学数学系任教,1935年被聘为教授,从此一直在清华大学任教,参与创办国内第一个计算数学专业。赵访熊于1962年和1978年先后两次出任清华大学副校长,1980-1984年兼任新成立的应用数学系主任,并受聘担任国务院学位委员会学科评议组委员。他担任过中国数学会理事、名誉理事。1978年至1989年担任第一、二届计算数学学会理事长及第三届名誉理事长和《计算数学学报》主编等一系列职务。数学家,数学教育家。我国最早提倡和从事应用数学与计算数学的教学与研究的学者之一。自编我国第一部工科《高等微积分》教材。在方程求根及应用数学研究方面颇有建树。
7.着名数学家,数学教育家。吴大任
1930年与陈省身以最优等成绩在南开大学毕业,考取清华大学研究生,1933年夏,在姜立夫的鼓励下,吴大任参加了中英庚款第一届公费留学考试,被录取到英国学习。他本想到剑桥大学攻读,因抵伦敦时间错过了该校入学的时机,改入伦敦大学的大学学院,注册为博士研究生。1937年9月初,吴大任到武汉大学任教,之后即随武汉大学迁到四川乐山。后来长期担任南开大学领导工作与教学工作,着、译数学教材及名着多种。对我国高等教育事业作出了积极贡献。研究领域涉及积分几何、非欧几何、微分几何及其应用(齿轮理论)。1981年他任国家学位委员会第一届数学组成员,《中国大网络全书数学卷》编委兼几何拓扑学科的副主编以及全国自然科学名词审定委员会第一和第二届委员。
8。着名数学家,北大教授,庄圻泰
1927年考入清华学校,1932年毕业于清华大学数学系,1934年,熊庆来教授接受庄圻泰为自己的研究生,1936年于该校理科研究所毕业。1938年获法国巴黎大学数学博士学位。曾任云南大学教授。1952年院系调整后,庄圻泰留任北京大学。此后除继续担任复变函数课程的教学任务外,他还陆续讲过保角变换,拟保角变换,整函数与亚纯函数等专业课。九三学社社员。长期从事函数论研究,在整函数与亚纯函数的值分布理论上取得重要成果。着有《亚纯函数的奇异方向》,合编《AnalyticFunctionsOfOneCom·plexVariable》(在美国出版)
9.着名数学家,数学教育家,四川大学校长,柯召
1931年,入清华大学算学系。1933年,柯召以优异成绩毕业。1935年,他考上了中英庚款的公费留学生,去英国曼彻斯特大学深造,在导师L.J.莫德尔(Mordell)的指导下研究二次型,在表二次型为线性型平方和的问题上,取得优异成绩,回国后先后任教于重庆大学,四川大学。1953年,他调回四川大学任教至今。在这40余年间,他以满腔的热情投入教学和科研工作,为国家培养了许多优秀数学人材,在科研上硕果累累。与此同时,他还先后担任了四川大学教务长、副校长、校长、数学研究所所长等职,作为学术带头人和学校负责人,他卓有成效地抓了几个重要方面的工作:努力提高教学质量,积极开展基础理论研究,发展应用数学,培养一批高水平的人材。其研究领域涉及数论、组合数学与代数学。在二次型、不定方程领域获众多优秀成果。1955年选聘为中国科学院院士(学部委员)。
10.中央研究院院士,首批学部委员,许宝騄
1929年入清华大学数学系,1933年毕业获理学士学位,1936年许宝騄考取赴英留学,派往伦敦大学学院,在统计系学习数理统计,攻读博士学位。1940年到昆明,在西南联合大学任教。1948年他当选为中央研究院院士。回国后不久就发现已患肺结核。他长期带病工作,教学科研一直未断,在矩阵论,概率论和数理统计方面发表了10余篇论文。1955年,他当选为中国科学院学部委员。在中国开创了概率论、数理统计的教学与研究工作。在内曼-皮尔逊理论、参数估计理论、多元分析、极限理论等方面取得卓越成就,是多元统计分析学科的开拓者之一。1955年选聘为中国科学院院士(学部委员)。
11.中科院院士,原北大数学系主任,段学复
1932年考入了清华大学数学系(当时称为“算学系”)。 1936年夏,段学复获得理学士学位,毕业留校任助教。1941年8月进入美国普林斯顿大学数学系攻读博士学位。1946年回国任清华大学教授,自1952年院系调整后,任北京大学数学系系主任近40年。长期从事代数学的研究。在有限群的模表示论特别是指标块及其在有限单群和有限复线性群构造研究中的应用方面取得突出成果。指导学生用表示论和有限单群分类定理彻底解决了着名的Brauer第39问题、第40问题。在代数李群研究方面与国外学者合作完成了早期奠基性成果。在有限P群方面取得一系列研究成果。在数学应用于国防科研和国防建设方面作了大量工作。1955年选聘为中国科学院院士(学部委员)。
12.我国拓扑学的奠基人 江泽涵
毕业于南开大学,1927年参加清华大学留美专科生的考试,考取了那年唯一的学数学的名额,后在美国哈佛大学数学系留学,1930年获得博士学位。1930在美国普林斯顿大学数学系做研究助教。1931年起,长期担任任北京大学数学系教授,并任北京大学数学系主任,曾兼任理学院代理院长。数学家,数学教育家。早年长期担任北京大学数学系主任,为该系树立了优良的教学风尚。致力于拓扑学,特别是不动点理论的研究,是我国拓扑学研究的开拓者之一。1955年当选为中国科学院数理学部委员。
13.中国科学院数学研究所的筹建者 田方增
1934年考入清华大学,第一年读机械工程系,第二年起转入算学系。1940年秋受聘为清华大学算学系助教,1947年秋考选为中法公费留学生,1948年转巴黎大学,回国后被中国科学院聘为数学研究所筹备处副研究员,筹建中国科学院批准成立的数学研究所,几十年来田方增为数学研究所的建设以及中国数学学科特别是泛函分析这一分支学科的发展做出了重要贡献。他参与了中华人民共和国成立以来中国的一些重大的数学活动。他被聘为全国科学技术委员会数学组成员,参与了1956年制订的十二年远景规划的有关项目,1978年、1983年接连两届被选为中国数学会理事,在理事会任期内受托为泛函分析学科组负责人,致力于泛函分析基本理论及其应用研究。是在中国建立中子迁移数学理论研究组的主要学者之一。为发展我国的泛函分析研究做出了积极贡献。
14.我国最早从事微分与积分几何研究的学者之一严志达
1936年考上清华大学,1940年他与陈省身合写了论文(也是他的处女作)得到积分几何运动基本公式。1941年他于西南联合大学(清华学籍)毕业,随后去云南大学任助教。1946年他考取公费留学(中法留学生交流项目),次年秋去法国斯特拉斯堡大学随C.埃里斯曼学习。严志达于1949年获法国国家博士学位。1949—1952他在法国国家科学研究中心任职,1952年,严志达响应党和国家的号召,放弃了在法的优厚待遇,应聘回国到南开大学任教至今。40年来,他勤奋工作,为我国的科学与教育事业的发展作出了自己的贡献。从1954年起,他在南开大学主持了“李群与微分几何”讨论班,一直坚持到“文化大革命”。1972年开始,严志达对啮合理论进行了系统的研究,奠定了它的数学基础。这项成果受到国内外齿轮界的重视,从而推进了小组的工作并对我国齿轮界的研究产生了重大影响。1993年当选为中国科学院院士。
15.中国泛函分析学科的领路人,关肇直
1936年考入清华大学土木工程系,1946年考取公费留学生,不久被聘任为北京大学数学系讲员。年底入法国巴黎大学庞加莱研究所当研究生,研究广义分析。回国后进行组建中国科学院的筹备工作,1952年他参加筹建中国科学院数学研究所的工作,并在数学研究所从事他渴望已久的数学研究工作,历任副研究员、研究员、副所长等职。1979年参与中国科学院系统科学研究所的创建,并任所长。他生前还担任过中国数学会秘书长、北京数学会理事长、中国自动化学会副理事长、中国系统工程学会理事长、国际自动控制联合会理论委员会委员等职。他主持的研究工作成果多次受到有关部门的奖励和表彰,其中《现代控制理论在武器系统中的应用》和《我国第一颗人造卫星的轨道计算和轨道选择》获1978年全国科学大会奖,《飞行器弹性控制理论研究》获1982年国家自然科学二等奖,《尖兵一号返回型卫星和东方红一号》获1985年国家级科技进步特等奖(关肇直在该项目中负责轨道设计和轨道测定两个课题),关肇直本人并荣获“科技进步”金质奖章。1981年被选为中国科学院学部委员。
16.中国数学会组合数学与图论委员会主任 徐利治
1940年考取西南联合大学数学系。1945年毕业时被华罗庚教授举荐,留在西南联合大学任其助教。后应聘到北京清华大学任助教。在此期间他相继发表了一批有国际影响的论文。1949年北平解放前夕获得了英国文化委员会的奖学金,作为当年该奖学金资助中唯一一名数学研究人员,赴英国阿伯丁大学和剑桥大学访问进修各一年。1951年回国后,担任了清华大学数学系副教授.1952年,在原东北人民大学组建了数学系,徐利治任数学系副主任。1961年受聘为美国《数学评论》杂志的特约评论员。他主要致力于分析数学领域的研究,在多维渐近积分,无界函数逼近以及高维边界型求积法等方面获众多成果,并在我国倡导数学方法论的研究。至1991年初’他共出版专着近20种,发表论文计150余篇。他受聘为中国科学院数学研究所学术顾问,南开大学数学研究所学术委员和中国数学会组合数学与图论委员会主任;担任国际性英文刊物《逼近论及其应用》杂志副主编,《高等学校计算数学学报》名誉主编,以及德国《数学文摘》杂志评论员。1988年英国剑桥国际传记中心将他列入国际知识界名人录和太平洋地区名人录。
17.中国科学院院士 万哲先
1948年毕业于清华大学数学系。中国科学院数学与系统科学研究院系统科学研究所研究员。从事代数学、组合论研究,在典型群、矩阵几何、有限几何和编码学等领域进行了系统研究。50年代和80年代初解决了典型群的结构和自同构方面一系列难题。1958年对解决运输问题的图上作业法给出理论证明并进行了推广应用。60年代中和90年代初运用华罗庚开创的中国典型群学派的矩阵方法研究有限域上典型群的几何学,获得了系统的重要成果,并利用它构造了一些结合方案、PBIB设计和认证码并研究了有限域上型表型问题,典型群的子空间轨道生成的格等。从90年代运用代数方法研究卷积码,澄清了一系列疑问。最近证明了对称矩阵几何及哈密尔顿矩阵几何的基本定理,是对华罗庚开创研究的矩阵几何的重要贡献。1991年当选为中国科学院院士(学部委员)。
参考资料:http://www.xkcmath.com/article.asp?articleid=2587
B. 中国有哪些着名的数学家
1、华罗庚
华罗庚(1910.11.12—1985.6.12), 出生于江苏常州金坛区,祖籍江苏丹阳。数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。
他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。
2、冯祖荀
冯祖荀(1880-1940),数学教育家。中国现代数学教育的早期代表人物之一。1911年以后,多次担任北京大学数学系主任,对在中国传播现代数学知识有重要贡献。
在日本留学期间,冯祖荀和当时由北京赴日留学的若干学生发起成立了“北京大学留日学生编译社”,该社“以讲求实学输入文明供政界之研究增国民之知识为宗旨”,选择编译的题材“亦必以纯正精确可适用于中国为主”。
该社出版《学海》杂志,于1908年发刊,总发行所为上海商务印书馆。该刊分甲乙两编,乙编涉及理工农医各科,首期首篇即是冯祖荀译的《物质及以脱论》,《学海》是我国最早的科技译刊之一。
3、熊庆来
熊庆来主要从事函数论方面的研究工作,定义了一个“无穷级函数”,国际上称为“熊氏无穷数”。熊庆来在“函数理论”领域造诣很深。1932年他代表中国第一次出席了瑞士苏黎世国际数学家大会。
1934年,他的论文《关于无穷级整函数与亚纯函数》发表,并以此获得法国国家博士学位,成为第一个获此学位的中国人。这篇论文中,熊庆来所定义的“无穷级函数”,国际上称为“熊氏无穷数”,被载入了世界数学史册,奠定了他在国际数学界的地位。
4、林家翘
林家翘(1916.7.7-2013.1.13),美国国籍,生于中国北京市,原籍福建福州,力学和数学家,天体物理学家,现代应用数学学派的领路人。林家翘致力于通过数学的应用来推动自然科学的发展。
他不仅在流体力学、天体物理等方向上取得了举世公认的成就,而且为应用数学概念的传播不遗余力,0世纪40年代开始的流体力学流动稳定性和湍流理论方面的工作,带动了整整一代人在这一领域的研究探索。
从20世纪60年代开始,进入天体物理的研究领域,开创了星系螺旋结构的密度波理论,并为国际学术界所公认,他在应用数学领域作出了多方面的重要贡献,特别是发展了WKBJ方法。
5、陈景润
陈景润(1933年5月22日-1996年3月19日),男,汉族,无党派人士,福建福州人,当代数学家。
1949年至1953年就读于厦门大学数学系,1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。
1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。1981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学学科组成员,中国科学院原数学研究所研究员。1992年任《数学学报》主编。
C. 田刚的学术贡献
Kaehler流形上Kaehler度量恰是其Ricci曲率的常数倍,则称为Kaehler-Einstein度量。Kaehler-Einstein度量存在性的基本问题是要确定Kaehler流形上存在这一度量的充分必要条件。一个明显的必要条件是第一陈示性类是正定、负定、或者为零,而在第一陈示性类正定时,更需要全纯向量场的李代数是约化的。Calabi猜测这个必要条件也是充分条件。
第一陈示性类负定时,Calabi猜测被法国数学家Aubin和美籍华裔数学家丘成桐分别独立解决。第一陈示性类为零时,Calabi猜测由丘成桐解决。由于上述成果有广泛应用,因此人们希望在第一陈示性类正定时也有所突破。但是,这一问题非常困难。在田刚的研究以前,这方面所知甚少,所获甚微。例如,当时还没有已知的没有非平凡全纯向量场,第一陈示性类正定的Kaehler-Einstein 流形。1987年,田刚引入了一个全纯不变量,给出了Kaehler-Einstein度量存在性的充分条件。作为应用,他给出了第一组没有非平凡全纯向量场,第一陈示性类正定的Kaehler-Einstein 流形。利用这个新的不变量以及田刚发展起来的其他工具,他彻底解决了复曲面上的Calabi猜测。这是非常重要的研究成果。高维的情形更加困难。他首先给出例子说明,此时即使全纯向量场的李代数是约化的,也有可能不存在Kaehler-Einstein度量。
利用他与丁伟岳合作引入的广义Futaki不变量,田刚首先提出K稳定概念,证明若Kaehler流形上存在Kaehler-Einstein度量则是K稳定的,并且猜测Kaehler流形上存在Kaehler-Einstein度量与K稳定等价。田刚的思想引发了广泛而深入的研究。随后的研究者中包括Donaldson,Mabuchi等。K稳定概念现已推广到极化的Kaehler流形,成为几何不变理论中重要的稳定概念之一。 田刚与阮勇斌合作,建立了量子上同调理论的严格数学基础,首次证明了量子上同调的可结合性。这是具有里程碑意义的研究工作。它使得原来形式上的计算有了严格数学意义。
在现代数学物理领域做出杰出贡献的Fields奖获得者Witten,从物理学的观点提出了拓扑σ模型,它在弦论、量子上同调、镜对称等领域都有重要应用。在田刚与阮勇斌的研究工作之前,拓扑σ模型及其应用在数学上是不严格的。田刚与阮勇斌的主要贡献是提出了一个新的不变量,这个不变量包含了已知的Gromov不变量,以及Witten的拓扑σ模型在数学上隐含的不变量,现称之为Gromov-Witten不变量。他们并且给出了Gromov-Witten不变量所诱导的量子上同调乘积的结合律的严格数学证明。
田刚与李骏合作,用代数方法,在具有0特征或充分大特征的代数闭域上的非异射影子族中定义了类似的不变量;并给出了一般的紧辛流形上Gromov-Witten不变量的严格定义(推广了田刚和阮勇斌的工作)。
田刚还与刘刚合作,解决了辛几何Arnold猜想的非退化情形。Arnold猜想起源于 Poincare有关环面保面积映射的固定点定理(这一定理由Birkhoff证明),在辛几何的发展中有重要影响。 田刚在高维规范场数学理论研究中做出了很大贡献,建立了自对偶Yang-Mills联络与标度几何间的深刻联系。
着名数学家Donaldson,利用规范场论中的Yang-Mills联络模空间定义了四维流形新的拓扑不变量,得到令人惊喜的成果,这一不变量被称为Donaldson不变量。该理论的解析基础是Uhlenbeck有关四维Yang-Mills联络模空间的紧化及可去奇点定理。
田刚建立了高维Yang-Mills联络模空间的紧化定理。实际上,他研究了包括自对偶Yang-Mills联络,Hermitian-Yang-Mills联络等经典场方程在内的一般自对偶联络,导出了单调不等式,证明能量集中集是m-4维可求长集合,而且由广义的极小闭链组成。特别地,Hermitian-Yang-Mills联络能量集中集是全纯闭链,Spin(7)方程能量集中集是Cayley闭链。他还与陶哲轩(Terence Tao)证明了高维Yang-Mills方程的可去奇点定理。 紧Einstein流形及其模空间的研究在微分几何中占有重要地位。二维和三维Einstein流形一定具有常曲率,因而是空间形式的商空间。但是,四维流形中,Einstein度量比常曲率度量多得多。无论是研究Einstein度量的存在性还是研究Einstein度量的模空间,都要理解它的退化情况。田刚与Cheeger在这方面做了开创性的研究。
他们利用“能量”(曲率平方积分)控制度量退化点数,证明了小能量正则性,给出了流形塌缩时体积的下阶估计。这些结果以及他们在研究中提出的克服流形倒塌所带来巨大困难的新技术在四维Einstein流形的研究中具有重大意义。 复流形上具有相同上同调类的所有Kaehler形式所成的空间是无穷维流形。Mabuchi在其上引入了一种自然的黎曼度量,使之成为无穷维黎曼流形,其测地线方程为退化的复Monge-Ampere方程。与有限维黎曼流形不同,无穷维黎曼流形中的测地线问题极其困难。因而,退化复Monge-Ampere方程的研究不仅是Kaehler几何中新的极具挑战性的问题,也是无穷维黎曼流形中测地线问题的例子。
田刚与陈秀雄合作,利用全纯圆盘的叶化,建立了退化复Monge-Ampere方程部分正则性的理论,利用之证明了Kaehler极值度量的唯一性。这项研究在Kaehler几何,非线性偏微分方程,与无穷维黎曼流形中都有非常重要的意义。 1904年,法国数学家庞加莱提出猜想:单联通、闭的三维微分流形微分同胚于三维圆球。这就是着名的“庞加莱猜想”,被认为是几何学和拓扑学中最重要的问题。1982年,Hamilton开始了Ricci流的研究,近二十年后,Perelman利用Ricci流解决了这一世纪难题。
实际上,Perelman的工作比较顺利地得到公认,田刚起了非常重要的作用。Perelman发布自己的第一篇文章以后,又通过电子邮件将文章寄给一些最好的专家,包括Hamilton、丘成桐和田刚。田刚经过研读觉得文章有新的思想,于是邀请Perelman来MIT访问,介绍他的工作,并且自己对Perelman的工作做了系统研究。Hamilton的Ricci流理论在20世纪90年代就遇上了瓶颈,最大的困难是处理那些可能随Ricci流演化出来的奇点,而这一障碍被Perelman克服了。2003年春,Perelman应田刚之邀来MIT讲解自己的工作,继而在美国东岸的各大学演讲,遂使他的工作受到更为广泛的注意。其后受克雷数学研究所的赞助,田刚参与组织了2004年9月在普林斯顿大学举行的庞加莱猜想及几何化猜想证明的研讨会。2005年夏天,克雷研究所又委托田刚主持在伯克利举行的关于Ricci流与Perelman工作的暑期学校。田刚与J. Morgan的专着帮助验证和解释了Perelman一些细节问题,也阐述了一些他们自己的思想。例如,Perelman用7页纸,仅给出了Ricci 流有限时间消没的证明思路,而田刚和Morgan则以八十几页纸给出了详细的证明,其中处理了带边极小曲面和边界沿曲线流运动等奇点问题。无疑,这是对庞加莱猜想的重要贡献。
此外,田刚提出了Kaehler-Ricci流奇点理论分析研究纲领,指出它与代数流形分类的紧密联系。田刚及其合作者在Kaehler-Ricci流,Kaehler-Ricci孤立子唯一性,调和映射紧性,高余维平均曲率流等方面都做出了根本性的贡献。 除去自己的研究,田刚还担任一些国际一流数学刊物的编委,其中包括公认的数学界顶级杂志《数学年刊》(Annals of Mathematics)以及Advances in Mathematics。中国数学会主办的《数学学报》是一份比较新的杂志,自1998年创刊以来,田刚一直对之悉心提携,有时候也往上面投文章,在增强杂志的国际影响力和吸引力方面,发挥了很大作用。
在一些有影响力的学术委员会里,田刚积极发挥自己的作用,如美国国家科技委员会主办的科学前沿论坛组委会(1995)、2002年北京第二十四届国际数学家大会学术委员会、加拿大Banff国际数学研究所的科学顾问委员会(2001-2005)、2003-2004年伯克利MSRI几何年项目主席等。在2006年的马德里第二十五届国际数学家大会上,田刚是几何方面的演讲者选委会主席。田刚还是阿贝尔奖(The Abel Prize)评委 。
D. 我国历代着名数学家有哪些
我国历代着名数学家有:
1、刘徽:魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。
2、赵爽:东汉末至三国时代吴国人。他是我国历史上着名的数学家与天文学家。生平不详,约182~250年。他研究过张衡的天文学着作《灵宪》和刘洪的《乾象历》,也提到过“算术”。
3、祖冲之:中国南北朝时期杰出的数学家、天文学家。祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。
4、朱世杰:元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。
5、梅文鼎:清初天文学家、数学家,为清代“历算第一名家”和“开山之祖”,被世界科技史界誉为与英国牛顿和日本关孝和齐名的“三大世界科学巨擘”。
6、胡明复:中国以攻读数学在国外获得博士学位的第一人。参与创建了中国最早的综合性科学团体中国科学社和最早的综合性科学杂志——《科学》。生于1891年5月20,1927年6月12日,在无锡溺水身亡。
7、熊庆来:中国现代数学先驱,中国函数论的主要开拓者之一,以“熊氏无穷数”理论载入世界数学史册。熊庆来主要从事函数论方面的研究工作,定义了一个“无穷级函数”,国际上称为“熊氏无穷数”。熊庆来在“函数理论”领域造诣很深。
8、华罗庚:(1910.11.12—1985.6.12), 出生于江苏常州金坛区,祖籍江苏丹阳。数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。
9、陈景润:1933年5月22日生于福建福州,当代数学家。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。
10、王见定:1982年1月毕业于北京工业大学,数学家、国际资深统计学会会员,长期从事数学、统计学、经济学的研究工作,作出了大范围的原创工作。
E. 田刚的生平事迹
田刚1982年毕业于南京大学数学系后,在北京大学张恭庆院士指导下攻读硕士学位,完成了一篇高质量的硕士论文(发表于《科学通报》)。
1984年田刚获得北京大学硕士学位,同年,他被北京大学公派赴美国,跟随菲尔兹奖得主丘成桐攻读博士。
1988年田刚获美国哈佛大学博士学位。 获得博士学位之后,田刚先后在普林斯顿大学,纽约州立大学石溪分校,纽约大学柯朗研究所任教。
1992年在柯朗研究所被提升为正教授。这时他的研究视野更加开阔,除了微分几何,他还把研究领域拓展到代数几何、数学物理。
1990年在日本京都召开的国际数学家大会上应邀作45分钟报告。
1994年,田刚获得美国国家科学基金(National Science Foundation)授予的沃特曼奖(Alan T. Waterman Award);
1996年,获得由美国数学会颁发的五年一度(2001年后为三年一度)的韦伯伦几何学奖(Oswald Veblen Prize in Geometry)。
1995年田刚开始担任麻省理工学院教授。
自1998年起,田刚受聘为教育部“长江计划”在北京大学的特聘教授(后转为讲座教授),开始担任国内的教职。
2001年,田刚当选为中国科学院院士。田刚为2002年北京举行的国际数学家大会的筹备工作投入极大精力。他也在这次数学家大会上受邀请作大会报告(1小时报告)。
2004年他当选为美国艺术与科学院院士。
2005年田刚主持筹建北京国际数学研究中心,担任中心主任。现在他还是美国普林斯顿大学Higgins讲座教授(Eugene Higgins Professor)。
2012年当选中国民主同盟中央副主席。
2013年3月任北京大学数学科学学院院长(兼)。
2015年,任国务院学位委员会第七届学科评议组成员
第十一届全国政协常委,十二届全国政协委员会常务委员。
F. 田刚丘成桐事件的详细经过
2005年8月19日:《北京科技报》发表题为《丘成桐:中国目前教育不可能出一流人才》的采访。 文中丘成桐指责中学界的腐败,并不点名地称田刚涉嫌剽窃:哈佛一位名教授告诉丘成桐,这个学生(田刚)抄袭他的论文,出于保护年轻学生的目的,丘成桐并没有深究。结果愈演愈烈。2005年8月20日:田刚兼职任教的北京大学数学学院回应《 丘成桐炮轰一文真相调查》,驳斥丘成桐对北大数学系的三个批评,并称其对田刚的剽窃说法是“歪曲事实”。2005年9月29日:丘成桐在浙江大学和中科院数学网站上再次以“北大学风不正”指责批评田刚。丘还在一篇题为《丘成桐院士澄清有关北大的某些事实真相》的采访中声称:田刚的成就基本是依靠丘成桐得来,而且田刚的道德恶劣,涉嫌学术造假和窃取他人学术成果。丘成桐并且出示了另一着名数学家萧荫堂给他写的书信,声称田刚抄袭萧的成果。 2005年10月1日:网上一篇署名“唐十七”的文章反驳丘成桐的指责,并攻击丘个人的学术道德。2005年10月4-6日:又有署名“天地正气”的网上作者攻击丘成桐:一贯不公,权力欲强、学霸作风、巧取豪夺、自我吹嘘。 2005年10月6-8日:李骏、洪家兴,曹怀东、郑方阳,季立真,刘克峰等人,胡森在网上发表文章,维护丘成桐。 2005年10月13日,北大数学学院学生安金鹏就一个网上对田刚的攻击(非丘成桐)为田辩护。田刚合作者加州大学Santa Cruz分校教授庆杰间接出面说明,他和田刚的论文没有剽窃丘成桐(回应了丘成桐的指控)。 2005年10月12日丘成桐在中科院网站回应网上对他的攻击。 北大丁伟岳院士和加州大学伯克利分校数学系退休教授项武义,在北大内部集会,对北大数学院学生讲丘成桐-田刚事件。丁伟岳称丘成桐对北大数院的批评是为了阻止北大建立国家数学中心,项武义讲了他与丘成桐的交往历程,对丘成桐有严重的批评。
2005年10月17日,哈佛大学教授萧荫堂公布丘成桐的信件,回应丁伟岳院士和项武义教授的指责并呼吁双方停止互相攻击。 2006年8月21日,《纽约客》杂志网站刊出了由《美丽心灵》一书(诺贝尔奖得主纳什传记)作者Sylvia Nasar与人合写的文章《Manifold Destiny》,攻击此前丘成桐宣传中国学者首先完全证明庞加莱猜想的动机不纯,并质疑其人品。有匿名网络作者声称此文幕后始作俑者是田刚。多位文章中受访的美国教授随后发表声明,称文章歪曲了自己的本意。 2006年9月1日,北京大学丁伟岳在自己的博客中发表文章庞加莱的困惑,批评国内对庞加莱猜想相关的宣传,直接公开点名批评丘成桐。 2006年9月4日,《21世纪经济报道》发表北京大学党委书记闵维方的访谈,在回应丘成桐对北大的“批评不够公道”之外,还评论说:“最近,我看到两则材料,一则是伯克利的项武义教授的一个谈话。在丘成桐的学生时代项教授就认识他了,可以说对丘教授非常了解。另一则材料是上个星期美国很有影响力的杂志《New Yorker》发表的一篇长篇报道,也有很多关于丘教授的内容。我想大家看过这两则材料,对丘教授与田刚和北大之间的争论就会有更客观、更清楚的认识了。”这反映出丘田之争中北大校方的立场。 2006年9月18日,丘成桐在自己的网站发表公开信,认为《纽约客》的文章有虚假和诽谤性的内容,要求做出更正。 2006年9月20日,《纽约客》杂志发表声明,表示该文的写作付出了大量工作,而且与丘成桐核实过原始材料,符合新闻规范。 2006年9月22日,北京大学数学科学学院在其网站及北大未名BBS上发表文章《北京大学数学科学学院的几点说明》[18],为北京大学及田刚辩护,否认丘成桐的指控,并称:“我们历来真诚欢迎任何个人或单位(包括该美籍华裔数学家)实事求是地对我们的工作提出批评和意见,有则改之,无则加勉。但我们坚决反对任何人或单位不负责任、毫无事实根据的捏造和污蔑。” 2006年9月25日,哥伦比亚大学教授理乍得·哈密尔顿发表声明,叙述了丘成桐及其研究团队在自己从事瑞奇流研究方面的支持,并赞扬了丘的人品。瑞奇流是证明庞加莱猜想的主要数学工具。
G. 田刚的介绍
田刚,数学家,1958年出生于江苏南京,1982年毕业于南京大学数学系。现为美国普林斯顿大学数学系教授,北京国际数学研究中心主任,中国科学院院士,全国政协常委,中国民主同盟中央副主席,国务院学位委员会第七届学科评议组成员1。 在微分几何和数学物理领域做出了重大的贡献,曾经在2002年国际数学家大会上被邀请作大会报告。
H. 田刚的相关消息
率先解决YTD猜想
北京大学数学科学学院院长、北京国际数学研究中心主任田刚教授率先解决K-稳定Fano流形上Kähler-Einstein度量存在性问题(即Fano情形的着名YTD猜想),论文已在世界顶尖数学期刊Communications on Pure and Applied Mathematics(CPAM)上发表。
2012年10月,田刚率先宣布解决了K-稳定Fano流形上Kähler-Einstein度量的存在性问题并给出了证明概要。解决这个长期未决的重大问题的关键技术途径是在锥Kähler-Einstein空间情形建立田刚早先猜测的部分连续模估计,而建立这一关键估计的主要方法是推广Cheeger-Colding-Tian有关Kähler-Einstein流形的紧化理论。田刚的证明综合应用了众多理论,涉及到很多数学分支,比如微分几何、代数几何、偏微分方程、多复分析、度量几何等,特别是其证明将这些领域联系在一起,将完善并推动这些学科的发展。
做客南开名人讲座
6月17日,在南开大学陈省身数学研究所建所30周年之际,国际着名数学家、中国科学院院士、北京大学讲座教授、数学学院院长,北京国际数学中心主任,美国普林斯顿大学Higgins讲座教授田刚应邀作客南开名人讲座,在省身楼作了题为“K稳定性”的学术报告。
讲座前,校党委副书记张亚会见了田刚,感谢他长期以来对南开数学的支持,希望他能够多来南开与师生交流,并对南开数学学科的发展多提指导意见。中国科学院院士龙以明、张伟平及陈省身数学研究所所长扶磊等参加会见。
田刚在微分几何和数学物理领域作出了重大贡献,特别是在凯勒-爱因斯坦度量的研究中做出了开创性的工作。如他提出了“K稳定性”的概念,并发现了凯勒-爱因斯坦度量的存在性与“K稳定性”的之间的深刻联系。在讲座中,田刚结合他多年来的研究心路历程,向师生们深入浅出地介绍了这一重要研究工作,同时还向在座的青年学子们指出勇于创新在做学问过程中的重要性。
在顶尖数学期刊JAMS上发表论文
近日,北京大学数学科学学院院长、北京国际数学研究中心主任田刚教授与人合作的论文《近爱因斯坦流形的结构》(On the structure of almost Einstein manifolds)在世界顶级数学期刊《美国数学杂志》(Journal of American Mathematical Society,简称JAMS)上发表。
田刚教授多年来致力于微分几何和数学物理等基础领域的研究,解决了一系列重要问题,特别是在凯勒-爱因斯坦度量的研究中做出了开创性的工作。此次他和合作者关于近爱因斯坦流形的结构的研究结果,对微分几何等领域将产生深刻影响。
I. 关于数学家的故事 急!!!!
华 罗 庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。
华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。