㈠ 《什么是数学》读后感,1000字以上.不要
读后感是议论性较强的读书笔记,要用切身体会,实践经验和生动的事例来阐明从“读”中悟出的道理.因此,读后感中既要写“读”,又要写“感”,既要叙述,又必须说理.叙述是议论的基础,议论又是叙述的深化,二者必须结合.
读后感以“感”为主.要适当地引用原文,当然引用不能太多,应以自己的语言为主.在表现方法上,可用夹叙夹议的写法,议论时应重于分析说理,事例不宜多,引用原文要简洁.在结构上,一般在开头概括式提示“读”,从中引出“感”,在着重抒写感受后,结尾又回扣“读”.
写读后感一般应做到三点:
1、要读懂原文的内容.“读后感”,顾名思义,就是先读后感.因此,读是至关重要的.只有通过读,抓住了原文的重要内容,才会写出自己的真实体会.
2、写自己体会最深刻的部分.一篇文章叙述的内容很多,要抓住文章中你自己体会最深的内容来写.体会不深,感想不丰富,读后感就写不成功.
㈡ 数学感悟300字
数学的学习是一个积累和运用的过程,因此,学好数学的一个必要前提便是要注重平时的积累和运用。而在日常时对于数学的学习还是有许多方法的。
学习数学,重要的是理解,而不是像其它科目一样死背下来.数学有一个特点,那就是"举一反三”.做会了一道题目,就可以总结这道题目所包含的方法和原理,再用总结的原理去解决这类题,收效就会更好.学习数学还有一点很重要,那就是从基本的下手,稳稳当当的去练,不求全部题都会做,只求做过的题不会忘,会用就行了.在做题的过程中,最忌讳的就是粗心大意.往往一道题目会做,却因粗心做错了,是很不值得的.所以在考数学的时候,一定不要太急,要条理清楚的去计算,思考;这样速度可能会稍慢,但却可以使你不丢分.相比之下,我会采取稍慢的计算方法来全面分析题目,尽量做到不漏.学习是一生的事情,不要过于着急,一步一个脚印的来,就一定会取得一想不到的效果.
我一直认为数学不是靠做题做出来的.方法永远比单纯做题更重要.在第二天讲课前,最好先预习一下.用笔划出不懂的地方.在老师讲课时认真听讲,并在原先预习时不懂的地方加以解释,写好步骤.在课上,有选择的听和记老师所讲的例题.首先要听懂,然后再记下些重要的步骤和方法以及易错的地方和自己不容易想到的地方.还有,重要的定理和结论一定要熟记.课后要善于总结本堂课的内容,并在脑中梳理自己不懂的但经老师讲后才明白的例题的步骤,梳理1至2遍.课后要按时完成作业.一般先看老师钩的题目,看完后再自己动手做一遍.至于那些老师没有钩的题目,可选择性的做一些.若想的时间太久,就需要"放弃"了.
数学学习做题是极为必要的,因此做题之后的总结工作也是极为重要的,否则只能是杂而不精,无法将知识融会贯通,合理运用。总结工作具体而言我们可以这样做:一,常备改错本,将自己做错的题目摘录下来,并将自己的错误做法和正确的作法一同记录下来,,以此警惕自己;二,正确把握考点,抓好典型,以此举一反三,我们在做题的过程中应该对题目考察的知识点有一定的认识,不可盲目做题,在此过程中我们可以提取一些具有某知识点的典型考法的题目,将其拟于一个标题之下记录,以此不变而应万变;三,对于许多学有余力的同学而言,仅有以上两点,想要得到进一步的提高还是远远不够的,我们还需要对解题方法有一个思辩的理解,从许许多多的解法中选取适于自己的解题方式,而对于一些灵活的题目而言,我们还应该在做题中对许许多多的情况进行总结,以便在考试中将方法灵活运用,防止死做与定性思维的产生。
(自己摘录)
㈢ 数学是什么读后感
数学是什么读后感
《什么是数学》——“对思想和方法的基本研究”是由美国R·柯朗、H·罗宾合着。
在序言里有这样两段话:一是数学对象是什么并不重要,重要的是做了什么。数学就艰难地徘徊在现实与非现实之间,它的意义不在于形式的抽象中,也不存在于具体的实物中;对于喜欢数理概念的哲学家,这可能是个问题,但确是数学的巨大力量所在——我们称它为所谓的“非现实的现实性”。数学联结了心灵感知的抽象世界和完全没有生命的真实的物质世界。
二是有意义的数学就像用来讲述有趣故事的报纸杂志,但不像某些报纸杂志,它的故事必须是真实的,最好的数学就应该像文学作品,故事来源于你眼前活生生的生活,这使你把精力与感情投入投于其中。
由这两段话,我就联想到了我们正在研究的“生活课堂”。我们企图让我们的课堂与现实的生活世界相沟通,让课堂的内容与学生的已有生活经历相融通。这样无疑就让我们的课堂更加的具有生命的底色和生活的发展力。如果我们的数学课仅仅是解题课,仅仅是空洞的演算和推理,它是没有很强的生命力的。如果脱离了与现实世界的关联,这样的数学只是一门工具,是冰冷的没有温度的,没有生命力的。
㈣ 数学读后感(字数不超过500)
学习数学,重要的是理解,而不是像其它科目一样死背下来.数学有一个特点,那就是举一反三”.做会了一道题目,就可以总结这道题目所包含的方法和原理,再用总结的原理去解决这类题,收效就会更好.学习数学还有一点很重要,那就是从基本的下手,稳稳当当的去练,不求全部题都会做,只求做过的题不会忘,会用就行了.在做题的过程中,最忌讳的就是粗心大意.往往一道题目会做,却因粗心做错了,是很不值得的.所以在考数学的时候,一定不要太急,要条理清楚的去计算,思考;这样速度可能会稍慢,但却可以使你不丢分.相比之下,我会采取稍慢的计算方法来全面分析题目,尽量做到不漏.学习是一生的事情,不要过于着急,一步一个脚印的来,就一定会取得一想不到的效果.
㈤ 关于数学的读后感 快一点~
许多同学报怨数学很难学习,老师讲的总是听得丈二和尚——摸不着和尚。我认为,学数学是有方法的,只要你掌握了这个党阀并加以运用,相信数学将成为你的朋友。
学数学最重要的就是要善于思考。如果把数学比作一把锁的话,那思考就是一把开锁的金钥匙,为你打开这把数学之锁。
例如有的同学上课认真听,能把老师讲的内容全部吞下去,却不去消化,不会吸收,最终还是“营养不良”。掌握是因为他没养成思考的好成绩,不能将老师讲授的东西再加工,不能进行分类整理,更不了解道路的来龙去脉,当然就无法掌握知识的真面目了。
我们要学习蜜蜂那样的工作方法,既会采蜜,又会酿蜜。在这方面,有的同学就做的比较好,他们在上课不仅专心听讲,他们在老师讲某一题的解题方法时就思考,思考出这样解的道理,虽然后再推出解这一类题的方法。这样就把老师交的融会贯通了。
我们在学习数学的同时,要注意培养自己善于思考的好习惯,学会灵活运用,举一反三,这样才能取得事半功倍的好成绩。
有人说:“数学是深奥的,变化摸测的,让人搞不懂,猜不透”。但在我眼里,数学至多是一套打满结的绳索,你必须耐心地解开一个又一个的死结,终有一天你一定能解开所有的结。
数学是利用学过的知识来解决未知的问题。学习数学要有毅力、有耐心、有恒心。正如一个挖井的人,挖了很深,就快接近水源时,却放弃;了,先前做的就都白费了,功亏一篑。
解答数学题时,细心也是很重要的。计算中只要有一丁点儿的疏忽,就可能整题错误。正如下棋,只要走错一步,可能导致全盘皆输。大意失荆州,不要等到做错了再后悔不已,世上从一为就未曾有过后悔药。
培根曾经过说:“只见汪洋就以为没有大陆的人,不过是拙劣的探索者”,“拙劣的探索者”就注定会失败,而失败的根本原因在于他们没有探索精神。科学发明需要探索精神,数学同样也需要探索精神。不要总是认为每一道题就一定只有一种解答方法,“条条大路通罗马”,要试着去探究,去思考,去发现。
有主见,有信心,也是学习数学必不可少的。不要总认为老师讲的课本上写的一定是正确的,要有自己的主见,不能人云亦云。每个人都要对自己有信心,一个人不可能永远成功,在面对失败时,要对自己有信心,相信自己一定能行。正如可尔德斯密斯所说的:“人生最大的光荣,不在于从不失败,而在于能屡仆屡起。”
㈥ 关于数学的读后感,急啊~
读《数学万花镜》有感
从小学到高中我一直对数学有着浓厚的兴趣,之所以对数学青睐,那是因为在启蒙的时候,就开始感觉到数学离生活很近。很小的时候,家人便会教我认数字;渐渐长大后,自己会用七巧板来搭各种各样的图案;而现在我又踏上了会计这条路,又是跟数字打交道……种种往事都让我跟数学有了不解之缘!而就在我看到了《数学万花镜》这本书后,才发现数学居然有这么多的奥秘有待我去探索!!!
《数学万花镜》不仅告诉我们很多很多的知识,还锻炼我们基本思维的训练。让我们知道如何运用思维,才能使我们更加的开拓视野。这是作者着名数学家胡·施坦豪斯所着的一本独特的介绍数学知识的书。为什么说它独特呢?那是因为这本书是以图形、图片和模型等为主,以必要的初等的数学说明为辅。生动地讲述了数学各个领域里的事实和问题。有时一些抽象而难以理解的数学理论,通过具体的可以捉摸的实物从而使数学具体化。使大家从实践中学到知识,理解真理!而施坦豪斯教授并不想在书中炫耀他能罗列多少难得住读者的题目,而是直接从初等数学的一些方面挑选题材,然后娓娓道来,旁征博引,让你深刻地感觉到生活中的方方面面都充满了数学。他的话题总是惊人的、奇趣的、令人高兴的,同时也是细致的、有洞察力的,让人情不自禁地重新审视周围的世界,从生活中领悟到真理,让你知道这个习以为常的世界的每一个角落,都有着让人惊奇,有趣的另一面。
《数学万花镜》还告诉了我们什么是数学!数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计量、量度和对物体形状及运动的观察中产生。其实在国外有很多着名的数学家,如牛顿,阿基米德等等,他们就真正的理解了数学,从而拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。在数学的世界和领域里感到快乐。然而他们为数学界也做了许许多多的贡献。虽然每看完一章是件不容易的事情,但是这本书是这样的有启发性,让我愉快的使用思维:想一想作者叙述的思路,我们就不得不惊叹于作者深厚的数学功底和数学的奇妙深奥。这时我便想起数学家高斯的名言“数学中重要的不是符号,而是概念”。而《数学万花镜》正是让人在潜移默化中认识到这一点的好书!
看了《数学万花镜》让你真正懂得了什么是数学,记得有一位老的法国数学家曾经说过:一种数学理论应该这样清晰,使你能向大街上遇到的第一个人解释它。在此之前,这一数学理论不能被认为是完善的。此地对数学理论所坚持的清晰性和易懂性,我想更以之作为对一个堪称完善的数学问题的要求;因为易于理解的问题吸引着人们的兴趣,而复杂的问题却使我们望而却步。所以人们常说学文科很简单,但是学习理科就没有那么容易了,而数学就有着广大的奥秘,这些奥秘不是一天可以探索出来的。但是这本书却让我们乐在其中,学习本是件枯燥但是又很有意义的事情,怎样才能愉快的去学习呢?在《数学万花镜》的世界里,会让你轻松,快乐的使用你的大脑,开动你的小脑,重新审视你的生活,领悟生活中不平凡而新奇的事情!所以我们只有从现在开始慢慢了解数学,从而喜欢数学,日复一日,年复一年的学习它。我相信秉持着我们热爱数学的心,总有一天我们会征服它的!!!
㈦ 《什么是数学》读后感 ,1000字以上。不要网上摘抄的那种。
《什么是数学》读后感
什么是数学?数学家R·柯和H·罗宾,合写了一本数学科普读物告诉你。无论是数学专业人士,或是想学数学的人都可以阅读这本书。特别对高中生和大学生、中学数学教师,都是本极好的参考书。全书对整个数学领域中的基本概念与方法,做了精深而生动的阐述。《纽约时报》评论这本书既为初学者也为专家而写,同时也为学生和教师、哲学家和工程师而写,是一本极为完美的着作。
这让我想起了我在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了我一生的道路。
那是苏步青上初三时,他就读XX中学来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“很久以前的世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使我终身难忘。
杨老师的课深深地打动了我,他给我的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要壮大中国;读书,不仅是为了个人找出路,而是为中华民族创造。当天晚上,我辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,我只知道读书、思考、解题、演算,4年中演算了上万道数学习题。中学毕业时,我门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
我从中读懂了,数学也有技巧。只要掌握技巧就一定会成功。
㈧ 求一篇关于数学的读后感
您好
《数学家的眼光》读后感
数学家的眼光和普通人的不同:在普通人眼中十分复杂的问题,在数学家眼中就变得异常简单;普通人觉得相当简单的问题,数学家可能认为非常复杂。作者张景中院士从我们熟悉的问题入手,通俗生动地介绍了数学家是如何从这些简单的问题中,发现并得出不同凡响的结论的。《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉我们的是思考数学问题的思路和方法,让我们做题更加简便的“捷径”。
数学家的眼光可以从“三角形的内角和是180°”这个众人皆知的数学常识中看到“任意n边形外角和都是360°”,看到“蚂蚁在卵形线上爬一圈,角度改变量之和是360°”,这样的眼光,怎能不让人惊叹!
用圆规画线段﹐一般人立即反应:怎么可能呢?若按照常规思考,我们可能回答:“把圆规当铅笔用,再配合直尺,不就可以画线段了吗?”但是在只能用圆规不能用其它工具,画出绝对的直线段的情况下,可能就需要思考一下了。想一想,若不拘泥在平面上呢?用一个中空的圆罐子,将纸卷成圆柱状置入,将圆心固定在罐子中央,转动圆规,在罐子内侧的纸上画圆,当纸拿出后,线段便完成了!
鸡兔同笼,数学家的眼光从这个小学的数学问题又能看出什么呢?鸡兔同笼用方程的解法会很简单,但是它除了方程,还可以用最原始的方法去解。有人可能会笑了:有了简便的方法,还用那么笨的方法干什么?但如果倒过来想,用鸡兔同笼的方来做方程的话,那么很难方程不就好解了吗?
数学家的眼光,能从基本的数学常识中看出复杂的理论,能从不可能中看出可能,能从简单的问题中看出那题的解法。在数学家的眼中,最最基础的理论也可以衍伸变化出高深的数学问题。数学的领域是无穷广阔的,真正的关键在于自己,若我们用心观察四周的事物,抓住平凡的事实,思考、探索、发掘,会发现数学是耐人寻味且无所不在的。数学家的眼光从洗衣服中都能看见数学的影子,那么我们也一定能够从其它事情中看到数学,久而久之,就会慢慢理解数学,喜欢上数学。这样,数学就不再是让我们绞尽脑汁去思考的难题,而是生活中处处都有的小精灵。
如果有问题请您追问,如果对您有所帮助请采纳
分享到搜狐微博