㈠ 求助 <<数学史>>论文 急需!!!!希望各位朋友帮忙啊.
看看行不。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。论文关键词:数学史;渗透;数学史教育;数学素养
论文摘要:数学史教育对学生数学的学习和数学思想方法的领悟是十分重要的。当前中学数学史教育的主要现状是其内容和方法不能满足学生对数学学习的需要。数学史教育应与日常的数学教育有机地结合起来。
一、引言
数学史是研究数学的发生、发展过程及其规律的一门学科,它研究的主要对象是历史上的数学成果和影响数学发展的各种因素,探索前人的数学思想,借以指导数学的进展。并预见数学的未来。我国数学家吴文俊说过:“数学教育和数学史是分不开的。”本课题研究针对“现行教材中的有关数学史知识是否能满足学生的强烈求知欲”、“数学史知识对学生的学习到底有何帮助”、“数学课堂教学中应该如何渗透数学史”等问题进行了探讨。目的是通过对中学数学史教育现状的调查。发现问题并提出建议,以促进中学数学史教育。
二、调查对象和方法
调查的对象是浙江省平湖市城关中学一(4)、一(6)班,东湖中学二(2)、二(3)班和南市中学三(1)、三(4)班共290位学生。主要采用问卷调查的方法。共发放问卷290份,回收率100%,其中有效问卷275份,有效率94.83%。
此次调查共分三个步骤进行:(1)首先对问卷进行了仔细的研究,尽量使问卷题目准确地反映调查者的目的,提高问卷的效度。(2)随机选择三所学校的六个班级进行问卷调查。(3)在问卷调查之前对学生做了必要的引导,避免学生出现不必要的心理负担。保证了答卷的真实性和可靠性。
三、调查结果和分析
1、大部分学生喜欢数学史知识
从调查结果看,只有极少数学生不喜欢数学史;有半数以上的学生觉得数学史学习对于他们平时的数学学习是有帮助的:大部分学生认为数学课介绍数学史知识是有必要的。他们希望老师在上课的时候结合课堂内容讲一些数学史方面的知识。学生对于数学史知识的获得很依赖教师的讲解,笔者也觉得教师在学生数学史知识的学习中起着重要的指导作用,课堂教学是渗透数学史知识的主要阵地,通过数学史知识的介绍,可以引发学生学习数学的兴趣,促使学生有意识地关注数学史知识。
2、目前教材的处理和教学方法不能满足学生的需要
对问卷“(5)你希望数学史的知识以怎样的形式穿插在数学教材中”、“(7)你最希望得到的是哪方面的数学史知识”、“(4)你认为数学教材中的数学史内容是否丰富”、“(8)你们老师在数学课上是否经常介绍数学史知识”这四道题的调查显示。现行初中数学教材中的数学史内容以旁注阅读材料的形式穿插于其中是为绝大多数学生所接受的。对(4)题,只有6.18%的学生认为是丰富的,对(8)题,只有7.37%的学生认为是经常的。可见数学教材中的数学史内容还远远不能满足学生对数学史知识的渴望,在课堂教学中融入数学史知识做得还很不够。从调查结果中还可以看出,学生是希望知道数学知识的产生过程。希望知道数学家的生平事迹,希望了解数学的新发明、新成果。等等。从问卷的第(9)题“写出你知道的若干数学家的名字”中,绝大多数学生写出了陈景润、华罗庚、祖冲之、高斯等数学家的名字,很少有学生写出牛顿、欧拉、莱布尼兹、拉格朗日、费马等国外大数学家的名字。由此可见。绝大多数学生对于数学家的情况了解不多。
四、数学史教育的建议
1、课堂教学是融入数学史知识的主阵地
(1)运用数学史知识进行新课引入
一节新课,好的引入能引起学生的注意力,激发起学生的求知欲望。运用数学史知识导入新课。能让学生了解相关知识的来龙去脉。例如在学习等比数列时。可以向学生介绍古代印度国王奖赏国际象棋发明者的故事来引入。这样,学生的学习热情定能高涨,也就有可能进入学习状态。 (2)运用数学史知识作为教学结尾
一堂课的收尾也会令人回味无穷、浮想联翩。产生强烈的求知欲。譬如陈景润的老师在讲完整数的性质后这样说:“自然科学的皇后是数学,数学的皇冠是数论,而哥德巴赫猜想则是皇冠上的一颗明珠,这是一颗金光闪耀的明珠,你们谁能把这颗明珠摘到手呢?”正是老师的这番话在陈景润心中播下了哥德巴赫猜想的种子。因此,恰当地运用数学史知识作为教学结尾,能激起学生的学习情感,使其“余音绕梁。三日不绝”!
(3)运用数学史知识介绍数学知识的产生过程。数学教学的重要任务之一就是要学生了解数学知识产生的背景。应通过生动的史料知识让学生知道数学知识产生、发展的历史进程。例如,为了让学生了解函数概念的产生背景。并从中获得深刻的理解。可通过瑞士数学家约翰O柏努利对函数概念进行了扩张,把“由变数X和常数所构成的式子,叫做X的函数”。再后来欧拉将可以“解析表示的量”称为函数。此后又经过了三次扩张,才得到如今中学教材中函数的概念。只有当学生了解函数的多次扩张的发展史,才能更好地认识和掌握它。
2、数学史内容的选择
介绍数学史的内容要注意连续性。作为十七世纪数学的三大成就,介绍对数的发明、解析几何的诞生。也就应该介绍微积分的创立。即便是对同一内容的介绍。也应遵循连续性。而且插入的数学史内容应与教材恰当地融合。还有,在课堂中穿插数学史的故事。不一定仅仅局限于数学家。事实上。历史上那些并非是数学家的名人学习和钻研数学的故事对学生、尤其是对那些不喜欢数学的学生来说,同样能产生教育的效果。
3、改变时间观念
介绍数学史我们可以用多种方法,可以详细讲、也可以简略介绍,增加这些内容不会对学生造成很大的负担。只会增加教学内容的趣味性、灵活性和可读性。我们不一定都在课堂上渗透,可以让学生自己进图书馆或通过网络查找相关资料进行学习而获得。对于重点教学内容(如:对数的发明,函数定义简史,等差数列与等比数列等),教师可以利用课前5-10分钟进行介绍。或融入在课堂教学之中。
4、运用数学史开展研究性学习
以数学史为载体开展一些研究性学习活动,可以让学生体会到数学与生活通常是完美、和谐地相结合的。在数学教学中渗透数学史知识,给学生提供丰富的数学史料。为学生提供有效的学习方法,从而产生持久的学习动力。学生从教师那里获得的知识,经过自己的思考、探索,更能发现知识的欠缺,从而明确前进的方向。
5、开展丰富多彩的课外活动
数学史在课堂上的讲解是很有限的。有时需要结合班会、数学知识竞赛等丰富多彩的课外活动来加强数学史知识的学习氛围。比如,开设数学角、数学信箱等,征集学生感兴趣的数学史知识予以学习交流。这些活动具有一定的计划性和多样性,在课外活动中学生的身心得到放松,获取的知识更能得到切实的效果。而且通过亲自动手收集资料,可化被动学习为主动学习。同时对其它功课的学习都有一定的帮助。
在数学教学中融入数学史知识,力求保证学生掌握基本的数学思想、基础的数学知识和技能。形成对数学比较全面的认识;让学生了解教材中所安排的与学习内容相关的数学发展史和数学家的传记、数学发展趋势和潜力等:充分体会数学发展的历史所蕴含着的丰富的数学思想和方法。这既是发展学生智力和培养学生创新意识的基础,也是提高学生数学素养的有效手段。
㈡ 浅谈如何在高中数学课堂中渗透数学史
数学史对数学教育的作用,已经得到各国教育界的普遍重视。《普通高中数学课程标准(实验)》指出,应尽可能结合高中数学课程的内容,介绍一些对数学发展起重大作用的历史事件和人物,反映数学在人类社会进步,人类文明建设中的作用,同时也反映社会发展对数学的促进作用。那么在现行的中数学教学中,如何将数学史融入到课堂教学中去呢?本文按照课堂教学的几个基本环节来具体谈谈怎样将数学史融入中学数学课堂中。
1.导入新课
利用情境导入融入数学史激发学生的学习兴趣。爱因斯坦说过:“兴趣是最好的老师。”在讲解一个难以理解的新知识以前,可以通过添加一个简短有趣的小故事引入这一问题。比如在学习等比数列的知识时,首先引入棋盘上的麦粒这一故事:古代印度的舍罕王,打算重赏国际象棋的发明者――宰相西萨。西萨向国王请求说:“陛下,我想要向你要一点粮食,然后将他们分给贫困的百姓。”国王高兴的同意了,西萨说:请您派人在这张棋盘的第一个小格子内放上一粒麦子,在第二格放两粒,第三格放四粒,第四格放八粒,以此类推每一格内的数量比前一格增加一倍。陛下啊,把这些摆满棋盘上说有64格的麦粒都赏赐给您的仆人吧!我只要这些就够了。对于这样一个听上去微不足道的要求,国王和大臣们听了都暗自发笑,聪明的同学们,你们能算出西萨究竟要了多少麦粒吗,这一故事,既可以激发学生的学习兴趣,自发积极地动脑动手思考,又可以提前让学生接触到数列的本质东西。对于接下来的学习大有裨益。
再比如在学习对数以前,可以先介绍一下数学家John Napier精编了可供实用的对数表,对数的发明,解决了许多天文学的复杂计算问题,在计算器和计算机发明以前,它持久的用于测量,航海和其他数学分支中。在学习对数以前,加入对数发明不易的内容了解,能让学生更加珍惜这数学家的来之不易的成果,进而在学习的过程中,更加努力。
2.学习新知。
在学习新的知识过程中,可以适当加入与之相关的古代数学家是怎样解决该数学问题的。例如在学习勾股定理的过程中,可以引入三国时期吴国数学家赵爽给出的证明:
赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。
通过介绍赵爽的证明方法可以开拓学生的思维,也能加深他们对勾股定理的认识。
可以在教学过程中再加上几种证明方法,一方面巩固已经学习的知识,另一方面启发学生从多个角度思考如何证明勾股定理,开拓学生的思维。
3.巩固练习
巩固练习阶段对新知识的获得是必可可少的阶段,当然,在此阶段内可以适当融入求解数学史中的问题,比如在学习了一元一次方程的求解以后,在课堂上可以给学生出几道古文数学题。
“隔墙听得客分银,不知人数不知银。
七两分之多四两,九两分之少半斤。
(注:在古代一斤是十六两,半斤是八两)
教学时,师生共同理解古诗文:有几个客人在房间里分银子,每人分七两,最后多四两,每人分九两,最后少八两,问有几个人,有几两银子
我们可以将数学史中的一些能用所学知识解决的问题列出来,让学生运用所学知识求解,这样学生在求解过程中能切身体会到古往今来的数学方法一脉相承,我们既可以学习数学家的思想,来思考现在所遇到的难题,又可以用自身所学的知识,去解决古时候记录的一些问题。
4.布置作业
在课堂教学结束后,给学生布置作业,可以为学生提供参考文献,引导学生阅读课外读物,例如,各种专题论述、人物介绍、学科进展等,开阔学生眼界,启发和引导学生进行正确的阅读,继而进行自学,使学生终生受益。比如我们在学完数列这一部分内容后,可以给学生留下作业,回去查查什么是斐波那契数列,斐波那契数列有什么应用价值,什么是芝诺悖论“阿基里斯追龟问题”等等。
数学史融入中学数学课堂,并不是漫无目的,生搬硬套的强加进去的,而是经过精挑细选,仔细斟酌之后为授课所用,在进行数学史的讲解时,我们应该尊重历史,尊重事实,既不可以随意编造,也不能无端拔高,更不能怀有狭隘的爱国心,要充分吸收来自世界的数学史,为教学所用,使中学数学课堂生动活泼,更加富有生命力。
㈢ 关于数学史或者数学家的故事的初中数学小论文应该怎么写大神们帮帮忙
参考《数学史教程》,也可以到书店查阅一些相关书籍,然后再写,写出你的感想就可以了。
满意请采纳
㈣ 怎样把数学史融入课堂论文
一直以来,数学史在数学教学中没有得到应有的重视,部分数学教师对有关数学史的知识轻描淡写,一带而过,忽视了数学史对数学教学的促进作用,如果不把数学史融入数学课堂教学中,那么数学的教育价值就难以体现,我们要充分认识到数学史对数学课堂教学的重大意义。
数学史融入课堂教学的现实意义
数学史融入数学课堂教学具有十分重要的意义,日渐成为当前数学教学的一种必然趋势。目前我国正在推进的基础教育改革十分重视数学史,采取了一系列措施,其中包括加强数学史和数学文化的教育。数学是人类文化的重要组成部分。数学课程应适当反映数学的历史、应用和发展趋势,体现数学的思想体系和美学价值,以及数学家的创新精神。新的《中学数学课程纲要》指出,以“对数学采取正面的态度,以及从美学和文化的角度欣赏数学的能力”作为数学教学宗旨之一。通过数学史的教学,学生不仅可以学到具体的现成的科学知识,而且可以学到“科学的方法”,开阔视野,培养洞察力。通过数学史例的介绍,学生不仅能养成注意数学发展的习惯,还能培养不甘落后、勇于进取、敢于创新的心理品格,这些正是新世纪高素质人才必须具备的基本素质。
2.数学史有效融入课堂教学的策略
数学史融入课堂教学可以活跃学习氛围,激发学生学习兴趣,使学生在了解数学价值的同时缩短心理上接受某一观念的时间。然而,现实的情况是教师普遍对数学史“高评价,低应用”,究其原因,课上无时间、手头无材料、胸中无知识、上面无要求。随着新课程改革的逐步深入,这一现象已有所改变。《义务教育课程标准(实验)》强调“数学课程应帮助学生了解数学在人类发展史中的作用,逐步形成正确的数学观”,笔者认为可以从以下方面入手,将数学史有效融入课堂教学。
2.1结合教材内容,“见缝插针”,使数学史自然融入课堂教学。
“圆”是一个古老的课题,人类的生活与生产活动和它密切相关。有关圆的知识在战国时期的《墨经》、《考工记》等书中都有记载,中穿插有关史料,作为课本知识的补充和延伸。例如讲解圆的定义与性质时,向学生介绍,约在公元前两千五百年左右,我国已有了圆的概念。圆的定义和性质在《墨经》中已有记载,其中,“圆,一中同长也”,即圆周上各点到中心的长度均相等。此外,还进一步说明“圆,规写交也”,即圆是用圆规画出来的终点与始点相交的线。这与欧几里得的定义相似,而《墨经》成书于公元前4~3世纪,是在欧几里得诞生时间问世的。
2.2利用数学史创设情境,增强教学效果。
利用数学史创设情境,可以增强课堂教学效果。形象生动地进行教学,更容易激发学生的学习兴趣。例如初三教材中有这样一道例题,是通过计算赵州桥的桥拱半径,使学生掌握垂径定理及其推论的运用。为了增强教学效果,激发学生学习兴趣,教师可结合图片介绍:“这是赵州桥,建于1300多年前的隋代大业年间,整个桥身是圆弧的一段,长50多米,宽9米多。这么长的桥,全部用石头砌成,没有桥墩……”这样引入数学史创设情境不仅可以让学生了解历史名胜,提高艺术鉴赏能力,而且可以使学生的学习情绪高涨,课堂气氛活跃。
2.3巧用数学史融入概念课的教学。
我国数学家余介石主张“历史之于教学可指示基本概念之有机发展情形,与夫心理及逻辑程序,如何得以融合调剂,不至相背,反可相成,诚为教师最宜留意体会之一事也”。数学史的引入不必完全遵循发明者的历史足迹,进行简单的移植和嫁接,而是要挖掘相关历史文献,创造性地制作适用于教学、自然、可信的“历史外套”,使学生在经历概念的历史演进的过程中,明确概念的效用与需要,从而获得牢固的印象和透彻的认识。
2.4利用数学史进行方法比较教学。
着名科学家巴甫洛夫指出方法是最主要和最基本的东西。一切都在于良好的方法,有了良好的方法,即使是没有多大才干的人也能作出许多成就。如果方法不好,则即便有天赋的人也将一事无成。必须使学生明白,任何方法仅仅是许许多多的方法之中的一个,其中有许多你可能联想都未曾想过。那种始终认为自己是最正确的、肯定自己的思维都比别人的要高明,肯定没有其他更好的选择的行为,都是自负的表现。自负是思维的重大过失,它会扼杀真正的思维。
事实上,数学教学中涉及的许多问题,从它的历史到现在,经过数代数学家的不懈努力,大都产生过不少令人拍案叫绝的各种解法。如勾股定理,就有面积证法、弦图证法、比例证法等300余种;求解一元二次方程,历史上就有几何方法、特殊值代入法、逐次逼近法、试位法、反演法、十字相乘法和公式法等;求不规则图形的面积,历史上有德漠克利法、穷竭法、割圆法、平衡法、开普勒法和沃利斯法及现代的微积分方法。通过搜集比较历史上的各种不同方法之后,学生不仅能更好地领会每种方法的内在本质,而且能深受启发,这对培养知识面宽、有能力、有信心、灵活多变的人才大有帮助。
总之,如何将数学史有效融入课堂教学的方法和途径还有很多,例如:在课堂中渗透历史发展的观点,开展数学史专题讲座,等等。我们应该认识到数学知识的学习与数学史教学之间的辩证关系,必须把握好数学史融入课堂教学的“度”,毕竟数学知识的学习是课堂教学的主阵地。数学史的融入达到“随风潜入夜,润物细无声”般潜移默化的效果,方为最佳境界。
㈤ 从数学史中学到了什么非数学内容论文
数学史是数学的一个分支是数学和历史相结合产生的一门交叉学科,它以数学科学的产生、发展的历史作为研究对象,阐明其历史进程,揭示其一般规律.作为教育者,如果把数学和它的历史割裂开来,数学史对数学教学的重大意义.
1.数学史在数学教学中的意义
1.1 巧妙运用数学史,激发学生的学习兴趣
课堂教学是数学教学的重要环节. 老师施教, 学生学习都是主要通过课堂教学途径来完成的. 引用数学史中与教学内容配合的数学家的故事, 使课堂教学一开始便可以引起学生的强烈兴趣, 让学生集中注意力思考数学问题, 是创造最佳教学“情境”、迅速揭开课堂教学序幕的一种方法, 这种方法能够调动学生学习数学的兴趣. 教材中的数学内容几乎每一部分都有引人入胜的历史典故,比如负数的、无理数以及复数的产生背后都有许多有趣的故事,
事实证明,课堂授课时那些知识丰富、谆谆善诱的老师远较那些授课时简单乏味、就事论事的教师受学生欢迎.如果教师在教授一些常见的数学概念、理论和方法时,能够指出它们的来源、典故及历史演变过程,将会使学生兴趣昂然.比如,教师在讲授“勾股定理”时,如果仅仅给出推导证明,学生也能够掌握.但是,如果教师给出中国古代的证明思路,或者提及古希腊毕达哥拉斯发现这个定理的经过,课堂气氛就会活跃起来.
在教师教授数学知识的时候,如果能不失时机地、适当向学生渗透一些有关的典故、背景或名人趣事,学生一方面开阔了视野,知道了数学知识的取得是如此曲折动人,就会对知识点产生更深刻的认识.知道了知识的来龙去脉,学生的知识面会得到不同层次扩展.如果他知道,从古至今,“勾股定理”的证法已经超过300多种,甚至还曾经有一位美国总统醉心于这个定理的证明,学生们一会产生旺盛的求知欲,努力从各方面去思考证明思路.
1.2运用数学史对学生进行辩证唯物主义世界观教育
辩证唯物主义和历史唯物主义教育是德育的重要组成部分一.培养学生树立辨证唯物主义的观点是中学数学教学任务一.结合教材进行辩证唯物主义教育是有一定局限性的,缺乏生动直观的素材,而数学史中充满大量的辨证统一关系等的实例,正好弥补这一点不足.比如:在讲勾股定理时可以介绍我国数学家赵爽在≤勾股圆方图注≥ 就总结了“数形结合”的辨证思想,例如32 + 42 = 52 是三个数之间的关系,相对应可建立一有形的直角三角形.这就具有朴素的辨证唯物主义思想.体现了辩证唯物主义的一个观点:物质世界是统一的.
在数学理论体系日趋完善的过程中很多辨证量是对学生进行辩证唯物主义教育的好素材.比如常量与变量,正数与负数,有限与无限等.这些有助于我们作为数学老师在今后的教学中深入挖掘教材,将教材背后的数学史知识提取出来,在潜移默化中传播给学生辩证唯物主义思想.
1.3通过数学史对学生进行爱国主义教育.
数学史是数学家的奋斗拼搏史,展示着数学家为真理而献身的伟大人格和崇高精神.数学新教材中有很多阅读材料,可以让学生了解到我国古代数学研究的累累硕果:如我国着名的数学典籍《九章算术》,其中首次提出了正负数的概念及运算法则,使得代数学早于西方于公元前2000年就产生了;着名的勾股定理是西周数学家商高最早提出来的,故其又被称为商高定理;刘徽首创“割圆术”,科学的得出徽率(即圆周率)3.14;同时可以结合教学内容,鼓励学生自己查阅相关资料,譬如关于“圆周率”,学生一定会查阅到祖冲之对圆周率进行运算得出杰出成果是π在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值的计算精确到小数点后6位小数的人,并可以了解到祖冲之在追求数学道路上的感人故事;又如杨辉的“三角阵”比法国“帕斯卡三角形”的发现早500多年┅┅这些杰出的数学家及其成就铸就了中国数学的光辉历史篇章.这样既可以学生的民族自豪感,自尊心和自信心,从而转化为为祖国建设事业而刻苦学习的责任感和自觉性,另一方面也可以学生培养不畏艰难,艰苦奋斗,刻苦钻研的献身精神.这样的例子在数学中还很多,只要教师巧妙挖掘教材,是可以找到很多类似的德育教育素材的.如在教学“相似三角形应用”时,我采用了《九章算术》中的“四表望远”,它记载了古代如何利用相似三角形的知识来解决,这样可以说是一举多得.学生在体会着数学知识的延伸时,又会惊讶于我国祖先的杰出才华,激发了学生的民族自豪感和爱国热情,从而激励自己努力奋斗.
我们拥有辉煌的数学史,我国是数学的主要发源地之一.数学史为进行爱国主义教育提供了依据,我们中华民族是最富有聪明才智,最勤劳,最富有创造力的民族.学习中国数学史,了解数学史,了解古代先进的成就,以增强自豪感和自信心,增强我们赶超世界先进水平的信心.
2.渗透数学史教育的方法
2.1以史入题
印度国王舍罕褒赏国际象棋发明者的故事想必我们都知道,是一个有趣的故事,把它作为“等比数列前n项和”这节课的开头,我想学生很快就会进入最佳学习状态的.这就是一个好开头的作用.要做到能够抓住学生的注意力,激起学生求知欲望,利用数学史,结合教学要求采用适当方式引入.
2.2引用数学史,突出思想方法
“授之以鱼不如授之以渔”,这个道理谁都明白.在数学教学中更重要的是注意方法教学:举一能否反三就在于是否掌握了其中的思想方法.如果我们教条地把一种思想方法传授给学生,他们未必能接受,而数学史中隐含了很多的数学思想方法,我们怎样才能恰到好处地将前人的思想方法介绍给学生.这就需要我们这些执教者不断的学习总结.
中学生对于勾股定理接受起来是很勉强,而赵爽的“勾股圆方图”就使得证明更易于理解.证明方法是:“案弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实.”用字母表示即:
2a b + (b – a)2 = c2 即 a2 + b2 = c2
几何代数巧妙地结合在一起,所体现的也就是数形结合的思想方法.这种思想方法在解决一些疑难问题时总会收到意想不到的效果.
我们应注意挖掘数学史中的数学方法,并恰当的渗透到数学教学中.使学生能直观地接受.
㈥ 数学史在初中数学教学中的应用价值
数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学。数学史对于揭示数学知识的现实来源和应用,对于引导学生体会真正的数学思维过程,创造一种探索与研究的数学学习气氛,对于激发学生对数学的兴趣,培养探索精神,对于揭示数学在文化史和科学进步史上的地位与影响,进而揭示其人文价值,都有重要意义。作为教授数学的教师来说,在教学过程中融入数学史的内容,不仅有助于提高学生的学习效果,而且有很强的教育功能。我认为其具体的教育功能主要体现在以下几个方面:
一、在教学过程中融入数学史可以帮助学生认识数学,形成正确的数学观。
二、数学史知识可增加学生学习数学的兴趣,激励学生学好数学
三、数学史知识可以使学生学会如何应用数学知识,对学生实践能力的形成起着巨大的推动作用。
四、数学史知识可以增强学生学习数学的信心
五、数学史知识可以增强学生的爱国主义精神,激发学生的学习热情
㈦ 如何在初中数学教学中加强数学史和数学文化的渗透
数学是一门历史性很强的科学,随着新课改的深入,数学不只是教会学生知识,数学的功能已从知识的学习渗透到数学作为一种文化的载体,是要学生从数学的学习中体会数学的文化功能,是要学生从数学的发展史中学到前人思考问题的方法,而数学史就是一部数学的文化史,现代微分几何的奠基人陈省身说:“了解历史的变化是了解这门科学的一个步骤”。在初中数学的教学中,教师要有意识的渗透数学文化史的教学,让学生觉得数学不仅仅是为了解题,还有很多有趣的内容。下面就在教学中应怎样渗透数学文化史的教学谈点看法。
一、教师要充分的认识到数学史,数学文化的教育意义
新课程标准把素质教育的核心“人的全面发展”着重赋予数学教育,是基础教育课程改革的显着特点,在传统的初中教材中几乎没有数学史的介绍,学了十多年数学的学生对数学史的了解几乎为零,这对学生综合素质的提高极为不利。在初中,如果教师有意识的渗透数学史的教育,会有积极的意义。
(1)促进学生的全面发展,长期的应试教育所培养的人才已经不能适应当今自然科学与社会科学高度渗透的现代化社会,社会需要全面发展的复合型人才,恢复科学的人文面目,使科学与人贴近,数学文化史涉及到人类文化的各个方面,在教学中多渗透这方面的知识,学生学习数学才会觉得自然,才会认为数学是有用的。而且数学在发展的过程中,有文理交叉,数学上一个概念,一个公式的产生都是自然科学与人文学科的结合,这有利于学生全面发展。
(2)能够培养学生的民族自信心和责任感,中国的数学有很悠久的历史,在十四世纪以前,中国一直是世界上数学最为发达的国家,出现了很多优秀的数学家,其中在代数和计算方面更是成绩显着,着名的有《周髀算经》和《九章算术》,了解这些对学生很有启发,会激发学生的学习兴趣,可以说这也是对学生进行爱国主义的教育。
(3)培养学生优秀的思想品质和吃苦耐劳的精神,很多初中学生的学习毅力不强,思想不集中,学习没有方法,而且很多学生没有吃苦的精神,在数学的发展史上,有很多数学成果的出现,都是前人类经过艰苦的努力,有的甚至是几代人的努力才获得的,教学过程中,教师要多举一些例子,例如欧拉就是典型的例子,他几乎是在双眼失明的情况下,靠惊人的记忆和心算能力进行研究和写作。教师如果经常讲一些这方面的例子,会对学生产生潜移默化的影响。
二、怎样把数学史和数学文化渗透到平时的教学中
(1)充分利用教材中的阅读材料,恰时恰点的渗透数学史
数学史的渗透要根据教材的内容做好安排,也不是每节课都要讲一些数学的发展史,例如在讲整式这一章,其中有一个阅读与思考:杨辉三角,如果教师把这个阅读与思考仅仅是放给学生自己看,那就失去了对学生进行爱国主义教育的机会,何况有很多学生不会去看这个材料,杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国数学史曾经有自己光辉灿烂的篇章,而贾宪三角的发现就是十分精彩的一页。教学中除了教材中的思考以外,还可以让学生观察这个三角形的各个数的特点,不只是让学生探索展开式中,还可以让学生探索,甚至更高的次数的展开式,以此提高学生的学习兴趣。在教学中可以补充有关数学家杨辉的资料以及贾宪的资料,培养学生的民族自信心。
(2)对数学史的教学,不只是在课堂上,要把这个工作延伸到课外
教师要不定期的给学生任务,让学生去读一些有关数学史的书籍,当然书籍的选择最好是由老师指定,因为初中学生能看懂的课外数学读物并不是很多,学生的选择有一定的盲目性,学生看书以后可以要求学生写读后感,写读书笔记,并要求在同学间交流各自的看法,如果教师长期要求学生这样做,对学生是一种很好的锻炼,也只有这样才谈得上是素质教育,数学教学如果仅仅停留在老师讲题,学生做题的循环中,哪有素质的提高?
(3)在教学中教师要根据教材的内容渗透数学文化的教育
特别是数学与文学艺术的联系,这无疑会提高学生学习数学的兴趣,例如在学生学会解一元二次方程以后,可以补充黄金分割的知识,因为黄金分割在绘画中应用很广泛,当然黄金分割也存在于数学中,在这里教师就要把这个黄金分割点的来龙去脉给学生介绍清楚,黄金分割点来源于2000多年前的古希腊,当时有数学家提出这样一个数学问题:给出任何一个线段,在其上找一点,这一点把线段分成长短两部分,使得全长与较长部分的长度的比等于较长部分与较短部分的长度的比。实际上这是解一个一元二次方程:,学生解这个方程是不困难的,但解出来的有一个根是负根,要舍去,另一个根,也就是这个点在这条线段长度的0.618的位置上。在教学中要多举一些应用黄金分割点来绘画的例子,这样学生的兴趣提高了,学习数学就有了源动力。当然,数学与音乐,文学的联系这里就不一一举例了。
总之,在数学史,数学文化的渗透中,不要走入极端,过分渲染,因为初中数学的主要任务还是以抓基础知识的学习为主,但是要把数学史与数学基础知识联系起来,以培养学生数学的思考问题,学习前人类解决问题的方法为主。只要广大的初中数学教师勇于探索,勇于创新,数学的教育功能就会得到加强。
㈧ 数学史怎样融入数学教育
20 世纪70 年代, 数学史与数学教育关系( HPM) 就已成为西方的一个学术研究新领域,美国学者的有关研究、论述和大力提倡是该领域创立与深入发展的重要推动力量. 长期以来,虽然人们已认识到数学教学中融入数学史的许多重要意义, 并在教学实践中有所行动,但其困难和问题的存在也是显然的. 其中一个显着的困难和问题就是, 数学教学中需要采取哪些教学策略来融入数学史呢?
1 故事策略
虽说数学史不等于数学故事,但是,数学家或数学界的遗闻佚事, 不仅能大大激发学生的学习兴趣,而且对学生的人格成长还富有启发作用. 譬如,我国着名数学家陈景润, 就是在上中学时, 听了他的数学老师沈元向学生介绍了, 哥德巴赫猜想这一难倒无数数学家的难题后, 其心灵受到了震撼,点燃起了他攀登高峰、摘取桂冠的热情, 从而他一生醉心于数学, 并取得了令世人瞩目的成绩. 说故事的目的就是要设计一个教学情景, 这个教学情景主要是能引起学生的学习动机与兴趣. 同时,也可利用故事情景引出学生已有的数学概念,或是借故事情节引入要教的数学概念,也可以利用故事情节的铺设, 呈现给学生想要解决的问题等.
2 方法比较策略
着名科学家巴甫洛夫指出:方法是最主要和最基本的东西. 一切都在于良好的方法,有了良好的方法,即使是没有多大才干的人也能作出许多成就. 如果方法不好,即便是有天才的人也将一事无成. 数学教学必须要使学生明白,任何方法仅仅是许许多多的方法之中的一个, 其中有许多你可能联想都未曾想过. 那种始终认为自己是最正确的、肯定自己的思维都比别人的要高明,肯定没有其他更好的选择的行为,这些都是自负的表现. 而自负是思维的重大过失,它会扼杀真正的思维.
通过搜集比较历史上的各种不同方法, 不仅能使学生更好地领会每种方法的内在本质,而且能启发学生,这对培养知识面宽、有能力、有信心、灵活多变的人才大有帮助.
3 追踪历史起源策略
数学固然起源于人类对日常生活现象的观察,但它决不简单, 有一定的难度, 需要时间去体验、把玩并体会它的意蕴. 追踪历史起源,就是要引导学生去揭示或感受知识发生的前提或原因、知识概括或扩充的经过以及向前发展的方向,引导学生在重演、再现知识发生过程的活动中,内化前人发现知识的方法和能力. 使学生在掌握知识的同时,还能占有镌刻于知识产生中的认识能力,这种认识能力正是构成创新思维能力的核心.
4 揭示思维过程策略
将数学研究中的思想和方法的要点原原本本地告诉学生, 使学生充分领略以前数学大师们的灵感,承受他们的启迪,可以从中学到他们的策略和经验等.前人的成功和失误,都是后人聪明的源泉. 数学史可以将逻辑推理还原为合情推理, 将逻辑演绎追溯到归纳演绎. 通过挖掘历史上数学家解决问题的真谛,学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,开拓学生的视野,使学生更具有洞察力.
㈨ 如何将数学史融入中学数学教学
《数学课程标准(实验)》提出:“数学是人类的一种文化,他的内容、思想、方法和语言是现代文明的重要组成部分。”数学是一种科学,更是一种人类的文化。营造数学文化的人文氛围,揭示数学的文化内涵,在数学教学中,渗透数学史是必不可少的!我们认为小学数学必须以数学文化内涵为导向重构教学,让数学史走进小学数学课堂,通过这些丰富内容的呈现,激发学生学习数学的兴趣,掌握数学知识的精华,真正提高学生的数学素养。只有如此,才能真正实现以学科教育促进学生的全面发展。
如何让数学史走进数学课堂?
1提高教师的自身的数学文化素养。现在的数学教师中有相当一部分教师基本的数学文化素养,部分教师知识面太窄,对数学的文化内涵无从把握。有的教师甚至从未读过数学史或未完整地读过数学史,于是他们不能正确的理解“渗透数学文化思想”的重要内涵。基础教育的教师,尤其是贫困边远地区的教师团队在这一方面的问题就更为严重,由于供教师参考的关于渗透数学史教育的文献比较少,所以他们自身的数学文化素养相对滞后。大多数数学教师把有关的数学史知识轻描淡写,一带而过,大大忽视了数学史对数学学习的促进作用,。
培养什么样的人才很大程度上取决于老师的教育思想和教育行为。教师的文化底蕴是数学“文化”的保证,教师对教材的理解,对数学的理解,对教学活动的组织都反映了教师的文化修养。所以说,提高教师的自身的数学文化素养迫在眉睫。首先,学校单位应有计划地组织小学教师学习、培训。而作为教师本身要提高意识,树立数学史的教育价值理念。有成长意识的教师会主动学习与自身教学有关的资料,熟悉学科最新动态,尽可能扩大有关教学的知识面,从而让自己跟上时代潮流,做一个专业型教师。从而把数学史融入到数学课堂教学当中,体现数学的文化价值。
2转变重“知”轻“识”的功利化观念
在各种考试压力下,仅仅关注学生对数学知识的接受,大搞题海战术,只会越来越使学生喘不过气,从而更加厌恶数学。所以,在数学教学中,我们必须树立全面育人的教育观,实施“减负”政策,认真贯彻素质教育,逐渐有序的把数学史的教育渗透到教学中去,重视对数学概念的理解、掌握数学思想与方法的运用。使学生能轻松愉悦的面对数学,让他们不再是空洞的解题训练,帮助学生树立好数学的信心。
3 改进教材编制, 以数学之趣激发兴趣。提高学习热情
俗话说:“兴趣是最好的老师。”学习数学,不应是“概念—定义—定理—解题”那样枯燥乏味。所以,为了能在教学过程中激发学生的学习兴趣,在小学数学教材中,应不同程度的适当的选一些有趣的数学史料作为背景知识。在小学阶段,数学史知识能更好的激发孩子们学习数学的兴趣,使学生更好的理解数学。(1)加强低年级段的数学史教育。从一年级开始就渗透数学史知识,在每册中都适当安排一些内容,让学生尽早接触。从儿童心理年龄特征看,在低段课程教材中恰当地融入数学史,更能吸引儿童,激发他们学习数学的热情。(2)增加新的设计模式。目前总体上说,小学数学教材的内容设计主要有两种比较好的模式。其一是“习题内容引出数学史”,像人教版,小学数学五年级上册的先由习题第5题创设的游戏情景引出“有些偶数可以表示成两个质数的和”的结论,进而通过提出问题而引出歌德巴赫猜想的历史由来,以及我国数学家对此所做出的贡献。另外一种模式是“阅读材料式数学史”,比如说西师版的在“倍数与因数”这章内容后以阅读材料的形式体现出来的:以“陈景润”为主线展开,有陈景润的故事引出哥德巴赫猜想。像这样的丰富的内容模式设计,使得数学史的渗透才更加全面,更具效果,能激发学生强烈的求知欲、好奇感,从而产生探索的快乐感,发生浓厚的学习兴趣。因此,教材编写者有必要根据不同的情况设计不同的模式,以达到效果最优化。
4、让数学方法、数学名题走进课堂
“问题是数学的心脏”这是数学教师所熟知的由美国数学家哈尔莫斯所说的一句名言。而作为教师,就应该善于创设问题,让数学课是由一个又一个的问题,一层又一层深入的问题组成的。而用数学方法论激活问题可以使教学具有灵活性,开放性和探索性。进行一题多解、一题多变,产生变化性问题;引导解题后反思,提出引申性问题等,激发学生的好奇心。同时需要结合数学名题,如高斯的故事:七岁时高斯还不到几秒钟把 1到 100的整数1+2+3+4+……97+98+99+100用1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,50×101=5050的方法快速的算出了答案。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。
这些具有精妙解题思想的数学名题,必能深深地吸引学生,帮助他们掌握知识的来龙去脉,学习到数学家的坚毅品质及为数学二合科学的献身精神,进而让学生养成良好的学习态度。
5、 运用数学史开展各种活动丰富课堂
怎样把枯燥无味的数学课堂变成吸引学生的磁场呢?我们可以通过各种小活动丰富课堂,活跃课堂气氛。实施这种方式的关键在于最大限度的发挥学生的能动性和积极性。
第一,课堂上可以进行一些与数学有关的小游戏,数学游戏的参与,既增加了学生的学习兴趣,也让学生了解数学家解决问题的特殊见解。
第二,开展读书交流活动。数学史课外书籍的阅读和交流是一种很好的方式,利用假期的时间提出任务,要求学生按自己的喜好阅读数学史书籍、故事,然后在活动课堂上交流自己的心得体会。
学生都是有悟性的,他们可以可以从陈景润等人研究数学奥秘的辛苦中获得一份学习的勇气; 可以从祖冲之的圆周率计算比外国早一千年获得民族自豪感……
第三,影视资料的运用。影视资料具有直观形象性这么一个优点,学生在听的同时又可以看,这种眼耳并用的声像结合,非常符合符合小学生的思维习惯。在活动课当中播放一些相关的数学史影视资料使介绍数学史知识时图文并茂,妙趣横生,更能吸引学生,激发他们的兴趣。
所以,利用计算机这一现代化的工具为数学史教育服务,把某一数学知识的发展过程娓娓道来,生动有趣。激发他们学习数学的欲望和自信。
数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富。在数学文化的背景下学习,能吸引学生自主性地参与学习活动,促使他们通过动手实践、自主探索与合作交流,获得必需的数学。这样才能有效地彰显它的文化价值。
最后,建议你多看一点数学史方面的书籍。国内现在也有一些书是讨论数学史与数学教育的,像汪晓勤,张维忠的书,
㈩ 如何在中学数学教学中渗透数学史的教育
数学史是一门独立的学科,它以数学科学的产生、发展的历史作为研究对象,阐明其历史进程,揭示其一般规律,它既是数学的一个分支又是科学史的一个分支.作为教育者,如果把数学和它的历史割裂开来,那么它的损失将是最大的.长期以来,数学史在中学教学中没有得到应有的重视,教材本身反映的比较少,供教师参考的关于渗透数学史教育的文献比较少,大多数数学老师把有关的数学史知识一带而过,或干脆不讲,这就大大忽视了数学史对中学数学的促进作用,如果不把数学史融入到数学教学当中,那么数学的教育价值就难以体现,所以我们要认识到数学史对数学教学的重大意义.
1.数学史在数学教学中的意义
1.1 巧妙运用数学史,激发学生的学习兴趣
课堂教学是数学教学的重要环节. 老师施教, 学生学习都是主要通过课堂教学途径来完成的. 引用数学史中与教学内容配合的数学家的故事, 使课堂教学一开始便可以引起学生的强烈兴趣, 让学生集中注意力思考数学问题, 是创造最佳教学“情境”、迅速揭开课堂教学序幕的一种方法, 这种方法能够调动学生学习数学的兴趣. 教材中的数学内容几乎每一部分都有引人入胜的历史典故,比如负数的、无理数以及复数的产生背后都有许多有趣的故事,
事实证明,课堂授课时那些知识丰富、谆谆善诱的老师远较那些授课时简单乏味、就事论事的教师受学生欢迎.如果教师在教授一些常见的数学概念、理论和方法时,能够指出它们的来源、典故及历史演变过程,将会使学生兴趣昂然.比如,教师在讲授“勾股定理”时,如果仅仅给出推导证明,学生也能够掌握.但是,如果教师给出中国古代的证明思路,或者提及古希腊毕达哥拉斯发现这个定理的经过,课堂气氛就会活跃起来.
在教师教授数学知识的时候,如果能不失时机地、适当向学生渗透一些有关的典故、背景或名人趣事,学生一方面开阔了视野,知道了数学知识的取得是如此曲折动人,就会对知识点产生更深刻的认识.知道了知识的来龙去脉,学生的知识面会得到不同层次扩展.如果他知道,从古至今,“勾股定理”的证法已经超过300多种,甚至还曾经有一位美国总统醉心于这个定理的证明,学生们一会产生旺盛的求知欲,努力从各方面去思考证明思路.
1.2运用数学史对学生进行辩证唯物主义世界观教育
辩证唯物主义和历史唯物主义教育是德育的重要组成部分一.培养学生树立辨证唯物主义的观点是中学数学教学任务一.结合教材进行辩证唯物主义教育是有一定局限性的,缺乏生动直观的素材,而数学史中充满大量的辨证统一关系等的实例,正好弥补这一点不足.比如:在讲勾股定理时可以介绍我国数学家赵爽在≤勾股圆方图注≥ 就总结了“数形结合”的辨证思想,例如32 + 42 = 52 是三个数之间的关系,相对应可建立一有形的直角三角形.这就具有朴素的辨证唯物主义思想.体现了辩证唯物主义的一个观点:物质世界是统一的.
在数学理论体系日趋完善的过程中很多辨证量是对学生进行辩证唯物主义教育的好素材.比如常量与变量,正数与负数,有限与无限等.这些有助于我们作为数学老师在今后的教学中深入挖掘教材,将教材背后的数学史知识提取出来,在潜移默化中传播给学生辩证唯物主义思想.
1.3通过数学史对学生进行爱国主义教育.
数学史是数学家的奋斗拼搏史,展示着数学家为真理而献身的伟大人格和崇高精神.数学新教材中有很多阅读材料,可以让学生了解到我国古代数学研究的累累硕果:如我国着名的数学典籍《九章算术》,其中首次提出了正负数的概念及运算法则,使得代数学早于西方于公元前2000年就产生了;着名的勾股定理是西周数学家商高最早提出来的,故其又被称为商高定理;刘徽首创“割圆术”,科学的得出徽率(即圆周率)3.14;同时可以结合教学内容,鼓励学生自己查阅相关资料,譬如关于“圆周率”,学生一定会查阅到祖冲之对圆周率进行运算得出杰出成果是π在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值的计算精确到小数点后6位小数的人,并可以了解到祖冲之在追求数学道路上的感人故事;又如杨辉的“三角阵”比法国“帕斯卡三角形”的发现早500多年┅┅这些杰出的数学家及其成就铸就了中国数学的光辉历史篇章.这样既可以学生的民族自豪感,自尊心和自信心,从而转化为为祖国建设事业而刻苦学习的责任感和自觉性,另一方面也可以学生培养不畏艰难,艰苦奋斗,刻苦钻研的献身精神.这样的例子在数学中还很多,只要教师巧妙挖掘教材,是可以找到很多类似的德育教育素材的.如在教学“相似三角形应用”时,我采用了《九章算术》中的“四表望远”,它记载了古代如何利用相似三角形的知识来解决,这样可以说是一举多得.学生在体会着数学知识的延伸时,又会惊讶于我国祖先的杰出才华,激发了学生的民族自豪感和爱国热情,从而激励自己努力奋斗.
我们拥有辉煌的数学史,我国是数学的主要发源地之一.数学史为进行爱国主义教育提供了依据,我们中华民族是最富有聪明才智,最勤劳,最富有创造力的民族.学习中国数学史,了解数学史,了解古代先进的成就,以增强自豪感和自信心,增强我们赶超世界先进水平的信心.
2.渗透数学史教育的方法
2.1以史入题
印度国王舍罕褒赏国际象棋发明者的故事想必我们都知道,是一个有趣的故事,把它作为“等比数列前n项和”这节课的开头,我想学生很快就会进入最佳学习状态的.这就是一个好开头的作用.要做到能够抓住学生的注意力,激起学生求知欲望,利用数学史,结合教学要求采用适当方式引入.
2.2引用数学史,突出思想方法
“授之以鱼不如授之以渔”,这个道理谁都明白.在数学教学中更重要的是注意方法教学:举一能否反三就在于是否掌握了其中的思想方法.如果我们教条地把一种思想方法传授给学生,他们未必能接受,而数学史中隐含了很多的数学思想方法,我们怎样才能恰到好处地将前人的思想方法介绍给学生.这就需要我们这些执教者不断的学习总结.
中学生对于勾股定理接受起来是很勉强,而赵爽的“勾股圆方图”就使得证明更易于理解.证明方法是:“案弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实.”用字母表示即:
2a b + (b – a)2 = c2 即 a2 + b2 = c2
几何代数巧妙地结合在一起,所体现的也就是数形结合的思想方法.这种思想方法在解决一些疑难问题时总会收到意想不到的效果.
我们应注意挖掘数学史中的数学方法,并恰当的渗透到数学教学中.使学生能直观地接受.
3 渗透数学史应注意的问题.
3.1形式多样灵活
以人教版新课标初中数学教材为例,书中是以选修的方式在“阅读与思考”栏目中呈现数学史的内容的.这些内容教师可以作为课外阅读材料让学生自学,教师也可以在教学时把它作为增强学生学习兴趣、启迪学生数学思维的材料加以灵活运用.
在教师灵活把握数学教材中的数学史部分外,教师还应该充分发挥自己的主观能动性,恰到好处地适时向学生渗透一些与所学数学内容有关,而教材中又没有呈现出来的数学史内容.我们刚刚举过的等比数列求和的例子是开篇引入的,把学生的注意力吸引过来,很好的完成本节的内容.如果我们设置一个令人回味的结尾,我想也许会给有心的学生开拓一条宽广的路.比如陈景润的老师沈元用一数学猜想来结束课堂:“自然科学的皇后是数学,数学的皇冠是数论,而歌德巴赫猜想则是皇冠上的一颗明珠``````”也许就是这么一个奇特的结尾才使陈景润摘下了这颗数学明珠.
我们既要充分利用好有限的课上时间,更要合理开发利用课外时间,让学生能拓宽数学知识领域.
3.2渗透要全面
我们有辉煌的数学史,数学是璀璨夺目的中国古代文化的重要组成部分,古代伟大的数学贡献不仅是当今进行爱国注意教育的绝佳材料,而且古代数学家实事求是,敢于坚持真理、勇于攀登高峰的高尚品德,也可以激励后人振兴中华,为实现中华民族伟大复兴的而奋斗的自强精神.但从元代中叶开始,中国的古代数学逐渐衰落,即而被西方数学赶超.近代成绩寥寥无几.所以我们应了解外国数学史,科学无国界.综合起来看一定会对数学的教育教学有很大的促进作用.
3.3正确介绍史料
作为数学老师,在介绍数学史料时,要本着历史唯物主义的态度.一定要依据历史的记载,不能因为要突出中国数学史而随意更改年代去削弱外国数学史的成就.
以刘徽的“割圆术”为例,我们都知道它是在中国最早具体体现极限思想方法的,我们就不能告诉学生这是世界上最早的,因为阿基米德要比刘徽早400年左右发现.他们的成就都是世界的财富,我们都应该尊重.这就要求我们在平时的工作中要大量阅读有关材料,以免误导学生.
3.4要密切结合教材
渗透数学史教育并不是单纯以历史为目的的.在教材中适当结合数学史知识,目的在于促进数学教学.毕竟我们的数学教材主要是教授数学知识的,数学史的渗透要恰到好处,不必系统,以防止出现喧宾夺主的结果,这类内容的教学最好能够达到润物细无声的境界.
以上是我对数学史教育的一点看法.在数学教学中挖掘教材中的数学史教育资源是教材培养功能和教育功能的具体体现. 着眼于现在,我们应注意在工作中加强数学史的学习.注意收集数学史料,并能恰当地运用到实际工作中去.从而不断完善高中数学课堂教学,提高教学艺术.在数学教学中运用好、发挥好数学史教育在教学中的作用, 可以使教学内容生动、具有感染力, 充分调动学生的学习积极性, 使学生真正成为学习的主人, 对提高教学质量有着事半功倍的作用.