❶ 一般的数学思想方法有哪些
1 函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。
2 数形结合思想
把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答。
3 整体思想
整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。
4 转化思想
在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。
5 类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么推断它们在其他方面也可能有相同或类似之处。
(1)比较分类的数学方法有哪些扩展阅读:
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系。
实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
引起分类讨论的原因主要是以下几个方面:
① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。
② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。
③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
❷ 常用的数学教学方法有哪些简单说明它们各自的优势与不足
(一)讲授法讲授法是教师运用口头语言系统地向学生传授知识的方法。讲授法是一种最古老的教学方法,也是迄今为止在世界范围内应用最广泛、最普遍的一种教学方法。讲授法的基本形式是教师讲、学生听,具体地说,又可以分为讲述、讲读、讲解三种方式。
讲述:教师向学生叙述、描绘事物和现象。
讲解:教师向学生解释、说明、论证概念、原理、公式等。
讲读:教师利用教科书边读边讲。三种方式之间没有严格的界限,在教学活动中经常穿插结合地使用。
讲授法的优点在于,可以使学生在比较短的时间内获得大量的、系统的知识,有利于发挥教师的主导作用,有利于教学活动有目的有计划地进行。讲授法的缺点在于,容易束缚学生,不利于学生主动、自觉地学习,而且对教师个人的语言素养依赖较大。
教师运用讲授法,应当注意以下几点。
1.保证讲授内容的科学性和思想性。教师讲授的概念、原理、事实、观点必须是正确的,这就要求教师认真备课和教学。
2.讲授要做到条理清楚、重点分明。讲授逻辑清楚,学生才能够理解清楚。
3.讲究语言艺术。教师的语言水平直接决定着讲授法的效果,因此必须不断注重和提高自己的语言修养。首先要做到语言清晰、准确、精练,既逻辑严密又清楚明白其次,要努力做到生动形象、富于感染力,这对于小学生尤其重要;再次,还应当注意语音的高低、语速的快慢,讲究抑扬顿挫。
4.注意与其他教学方法配合使用。小学生的注意时间有限,在整节课中完全采用讲授法很难取得良好效果,教师应当善于将讲授法与其他教学方法和手段交叉替换使用,避免学生因长时间听讲出现疲劳和注意涣散现象。
(二)谈话法
谈话法是教师根据学生已有的知识经验,借助启发性问题,通过口头问答的方式,引导学生通过比较、分析、判断等思维活动获取知识的教学方法。谈话法的基本形式是学生在教师引导下通过独立思考进行学习。
谈话法的优点在于,能够比较充分地激发学生的主动思维,促进学生的独立思考,对于学生智力的发展有积极作用,同时也有助于学生语言表达能力的锻炼和提高。谈法的缺点在于,与讲授法相比,完成同样的教学任务,它需要较多的时间。此外,当学生人数较多时,很难照顾到每一个学生。因此,谈话法经常与讲授法等其他方法配合使用。
教师运用谈话法,应当注意以下几点。
1.做好充分的准备。围绕什么内容进行谈话?提出哪些问题?提问哪些学生?以及学生可能做出什么样的回答?怎样通过进一步的提问引导学生?等等,教师都应当在事前周密考虑和安排。
2.谈话要面向全体学生。尽管谈话只能在教师与个别学生之间进行,教师还是可以通过努力吸引所有的学生。首先,谈话的内容应当是能够引起全体学生注意的、在教学中具有普遍性和重要性的问题。其次,教师应当尽可能使得谈话对象有代表性,比如选择不同层次的学生。再次,在谈话时适时加以适当的解释、说明作为补充。
3.在谈话结束时进行总结。在谈话中学生的理解和掌握往往表达得不够准确、精练,因此在谈话的最后阶段,教师应当用规范和科学的表述对学生通过谈话所获得的知识加以概括总结,从而强化他们的收获。
(三)讨论法讨论法是在教师指导下,学生围绕某个问题发表和交换意见,通过相互之间的启发、讨论、商量获取知识的教学方法。讨论法的基本形式是学生在教师的引导下借助独立思考和交流学习。
讨论法的优点在于,年龄和发展水平相近的学生共同讨论,容易激发兴趣、活跃思维,有助于他们听取、比较、思考不同意见,在此基础上进行独立思考,促进思维能力的发展。此外,讨论法能够普遍而充分地给予每一个学生表达自己观点和意见的机会,调动所有学生的学习积极性,并且有效地促进学生口头语言能力的发展。讨论法的缺点在于,受到学生知识经验水平和能力发展的限制,容易出现讨论流于形式或者脱离主题的情况,对小学生而言更是如此,这需要教师加以注意。
教师运用讨论法,应当注意以下几点。
1.选好讨论内容。首先,要选择那些有讨论价值的内容,一般来说,讨论内容应当是教学内容中比较重事实、概念、原理等。其次,要选择难度恰当的内容,一般来说,过于简单或过于复杂的内容都不适当,前者难以激起学生的学习热情,后者则容易挫伤学生的积极性。
2.肯定学生各种意见的价值。对于未知的东西,任何意见都是有价值的。学生总是从自己的逻辑出发去理解和思考,因此各种不同意见尽管可能离正确答案相去甚远,但却最真实地反映了学生的想法。教师不应当“裁判”,急于指出各种意见正确或错误,而要让学生畅所欲言,通过充分的讨论理解什么是对、什么是错,以及为什么对、为什么错。
3.善于引导。教师应当在学生讨论时全面巡视、注意倾听,善于捕捉讨论中反映出来的问题。在讨论遇到障碍、深入不下去时教师适当点拨,在讨论脱离主题时加以提醒,在讨论结束时帮助学生整理结论和答案,等等。这些对于讨论法的运用都是必不可少的。(四)练习法
练习法是学生在教师指导下,进行各种练习,从而巩固知识、形成技能技巧的教学方法。练习法的基本形式是学生在教师指导下的一种实践性学习。
练习法的优点在于,可以有效地发展学生的各种技能技巧。任何技能技巧都是通过练习形成、巩固和提高的,在教师指导下进行各种及时、集中的练习,能够在这方面取得比较迅速的效果。
教师运用练习法,应当注意以下几点。
1.明确练习的目的和要求。要让学生知道为什么进行练习,怎样才是达到了练习的要求,使学生的练习具有目的性和自觉性,避免练习的盲目性和机械性。
2.指导正确的练习方法。教师要在练习之前讲解和示范正确的练习方法,并且保证学生基本掌握,以便高练习的效果。
3.合理安排练习步骤。教师应当使练习有计划地进行,循序渐进。
4.科学掌握练习量。技能技巧的练习需要一定的练习量,但并不是越多越好,超过学生承受能力的练习会导致适得其反的结果。教师要根据小学生的身心发展特点来确定练习量。此外,一般来说,分散练习比过于集中的练习效果更好,将某种练习分成时间较短的几次完成要比一次性安排更为科学。
5.及时给予学生反馈。要使学生及时知道练习的结果,以便纠正错误和巩固成绩。
6.练习方式要多样化。要防止单一、重复的练习方式,根据教学任务和学生实际,将口头的与书面的、记忆的与操作的、课内的与课外的……等不同方式结合使用。采取多样化的练习方式,可以保持学生的兴趣和注意,提高练习的效果。4 读书指导法
读书指导法是教师 目的、有计划地指导学生通过独立阅读教材和参考资料获得知识的一种教学方法。
(七)以直观形式获得直接经验的方法
这类教学方法是指教师组织学生直接接触实际事物并通过感知觉获得感性认识,领会所学的知识的方法。它主要包括演示法和参观法。
(五 ) 演示法
演示法是教师把实物或实物的模象展示给学生观察,或通过示范性的实验,通过现代教学手段,使学生获得知识更新的一种教学方法。它是辅助的教学方法,经常与讲授、谈话、讨论等方法配合一起使用。
(六) 读书指导法读书指导法是教师 目的、有计划地指导学生通过独立阅读教材和参考资料获得知识的一种教学方法。
学法指导方法
学法指导应体现多层次多形式;通常有这样几种形式。
l、渗透指导
这是教师在课堂上见缝插针,随时渗透。
2、讲授指导
这是开设学法指导课,向学生直接讲授学法知识。
3、交流指导
这是教师组织学生总结交流学习经验,达到取长补短的目的。4、点拨指导
这是学生在学习迷茫时,教师给以恰当点拨提示。
5、示范指导
有些方法仅靠教师讲解是不够的,必要时教师要做示范,让学生效仿
小学数学学法指导
结合小学数学学科特点,我们认为小学数学学法指导应包括以下几方面内容:
1.让学生掌握基本的学习方法,养成良好的学习习惯基本的学习方法是学法指导的基础,也是一项重要的常规性工作。可以根据教学的各个环节,让学生掌握基本学习方法的训练途径。比如,怎样预习,怎样听课,怎样记笔记,怎样练习,怎样做作业,怎样复习小结等。针对每个环节的特点,学生进行学法指导,比如学概念、算理、法则、公式等各类基础知识的学法研究也属于这个范畴。
2.引导学生积极参与学习,让他们学会数学的思维方法数学学习离不开学生的数学活动,经过学生动手、动脑等亲身的感受,才能透彻掌握知识,形成能力。学习数学要会读、会听、会想、会说、会写,“会想”也就是会“思考”,教会学生学会思考,掌握—思维方法,形成良好的数学思维品质是数学教学成功的标志。教学中,教师要经常运用比较、分析、综合、抽象、概括、判断、推理等基本的思维方法,并在教学活动之中进行潜移默化的影响。久而久之,学生就一定能够掌握思考问题的方法。另外,在教学中,进行思维方法训练时一定要让学生充分运用视觉、听觉等多种感官参与活动,只有让小学生眼、耳、手、口、脑都用起来,思维能力才能得以充分训练。在思维训练的同时,要注意强化求同、求异思维对比训练。思维方法和思维能力的形成离不开思维活动,所以教学要创设间题情境,引导学生积极思维,进行深层次的参与。在思活动中,让学生学会思维的方法是小学数学教学的核心。
3.教给学生解决间题的方法解决问题对于学生来说是一种实践活动,通过解题要让学生学会分析问题和解决问题的方法。结合教学实际内容让学生逐步把握对应、假设、转化、化归、集合等数学思考问题与解决问题的方法。教学要使学生通过数学学习学会将生活中、生产中的实际问题转化为数学问题,从而通过数学问题的解决而解决实际问题。教师要注重引导学生在这方面实践、探索,把课内学到的知识与课外实际结合起来,学会发展,从而掌握解决问题的有效方法。
4.教给学生阅读数学课本的方法阅读是获得书本知识的基本方法。让学生掌握阅读数学课本的方法,就会增强学生学习数学的能力。教会学生阅读数学课本是培养学生独立学习的第一步,是养成良好数学阅读习惯的关键一环。小学数学教学指导学生阅读课本.
一是指导学生课前预习。课前让学生预习课本,对将要学习的新知识先自学,看哪些能看懂,哪些看不懂,课堂上带着间题听课。这里要注意的是,学生看书往往重结果轻过程,而我们应指导学生重点看过程。
二是课堂上看书。一般是新课之后,让学生阅读课本,给学生留有质疑的余地。有时老师也可以有意识地创设情境,让学生质疑,以培养学生的兴趣。
三是课后阅读课本。其目的是对所学的知识进行消化品味,如一些文字长或难记忆的概念,则需要学生加深理解。另外,课后学生还可以阅读一些数学课外读物’,以丰富自己钓知识。5.让学生学会操作方法小学生数学概念、技能、算理、公式的形成都是借助操作活动,通过对感性材料的对照、比较、分析、概括而获取的。当然,操作活动在小学数学学习中占有重要位置。正确、科学、有序、合理的操作,才能有效地促进生对数学知识的掌握。操作要有很强的目的性,操作是手段,是过程,不是目的,不是单纯为操作而操作。教师要善于将学生操作这一外化行为内化为学生的理性认识,进而加深学生对数学知识本质的理解,不断形成和扩展他们的数学认知结构,提高他们的数学能力。6.使学生形成质疑问难、敢于提问的好习惯学起于思,思起于疑。教学中,教师要努力创设一个和谐宽松的环境,使学生敢于向老师提问,哪怕提出的问题不尽合理,甚至是异想天开的,教师也不要加以指责,而是要鼓励他们多思、多问,保护他们好问的积极性和热情。学生提出的问题,通过大家讨论得到解决,会极大促进学生获取数学知识的主动性和自觉性,从而培养他们独立学习的能力。另外,教师要注意教给学生寻找问题的方法,使学生有问题可想,有问题可问。问题一般在这样几个环节寻找:一是在知识的生长点上找;_
二是在知识的“怎么样”上找;三是在知识的“为什么”上找;
四是在知识的归纳或分类上找;
五是在知识的作用方面找等等。在数学知识学习的过程中,处处都可能存在问题,只要广大小学生不断产生疑问,不断解决疑问,积极动脑思考,这样的学习才会是既生动活泼又积极主动的,这样的学习效果才能是最好的。教学时,教师要特别注意学困生的发问,要鼓励他们张开嘴巴,勇敢地发问。只有这样,才能使所有小学生的数学素质普遍提高。7;教会学生整理知识脉络,总结学习过程数学教学要重视数学联系的教学,即老师在教学时要注意新旧知识的联系、本学科知识与其他学科的联系,这样有利于数学知识形成一个清晰的网络,有利于学生组建良好的数学认知结构。
教学中,一方面要引导学生积极主动地参与学习的全过程;另一方面要引导学生回忆学习过程、总结学习。帮助学生把一些零散的知识纳入一定的知识结构中去,以便发现规律,进而自觉地运用规律探索新知,进一步完善数学知识结构,增强其自主学习的精神和动力。8.教会学生进行数学交流数学交流就是要求学生通过听觉、视觉、触觉,以游戏、阅读等方式来接受他人的数学思想,同时要求学生将自己的数学思想以动作的、直观的、口头的或书面的、儿童语言的或数学语言的形式表述出来,与大家一起进行交流。教会学生进行数学交流就是要教会学生“会听”数学、“会读”数学、“会写”数学、”会思考“数学。教师要引导学生善于运用他们自己的语言表述数学对象,只有多交流、多讨论,才能促进学生能力不断提高,智力水平迅速发展。
二、数学学法指导的原则
1.自主性原则。学法指导应把调动学生主动性、积极性放在首位,注意发挥学生的自主性。学法指导的目在于让学生掌握科学的学习方法,学会利用掌握的方法去主动获取新知乃至去创造新知。因此,教师在学法指导时,应善于激发学生的学习动机,调动他们的主观能动性,让他们自己去吸取、借鉴、完善知识体系,从而增强他们的学习能力。
2.渗透性原则。数学方法寓于数学知识之中,因此,教师应将学法指导寓于教学方法之中,教学既教知识又教方法,二者同步进行。
3.差异性原则。学生的数学基础、个性特征乃至学生情况等多种因素不尽相同。因此,在进行学法指导时,要区别对待,针对不同的对象进行有针对性的分类指导。
4.操作性原则。为了便于学习和掌握,教师提出的学习指导要求要具体明确,具有一定的操作J性。大凡学习指导要求太繁、过简或笼统含糊都不利于学生学习和掌握。5.整体性原则。上面千条线,下面一根针。为了发挥学习指导的整体效应,各个学科应从不同的角度、侧面,不同的层次、渠道全面进行学习指导渗透。如各个学科应“以学定教”,通过导人—新授—练习—小结—作业等渗透习方法,通过讲授—提问—板书—答疑等提示、点拨、总结学习方法。
三、数学学法指导的途径
1.讲授指导。讲授指导就是教师将自己掌握的学习数学的方法直接地讲授给学生,然后让学生照法去实践。
2.渗透指导。这是教师最常用的方法之一。这种方法是在教师教学的各个环节中,在传授知识中指导方法,随时渗透。让学生既知道学习结果,又掌握学习过程,既懂学习步骤,又会学习技巧。
3.示范指导。学生掌握学法过程的规律告诉我们,有些学法仅靠教师的讲解是不够的,必要时教师要做示范,让学生去效仿。
4.提示指导。这种指导方法要求教师在适当时机加以适当点拨、提示,学生便能抓住要点,迎刃而解。即在教师的点拨下,让学生自己悟出道理,掌握方法。
5.交流指导。此指导就是教师组织指导学生总结、交流自己的学习经验和方法,以达互相学习取长补短之目的。这种方法有很多好处,首先通过总结与交流能调动学生学习积极性;其次通过总结与交流使学生初步学会一些学习方法;再者通过总结交流,更容易推广他们的经验。
6.归纳指导。学生在学习活动中领悟到许多学习方法,但可能是不太系统的。因此教师要帮助分析、归纳、总结,使学生的学法得到巩固。我们认为,数学学法的研究要与数学的教学研究有机结合,教法的研究有助于学法的研究,学法的研究能促进教法的研究。研究任何一种数学教学都必须与学法研究紧密联系,同步展开,只有这样,才能体现“教法”为主导、“学法”为主体的相互依赖的辩证关系。我们要变教为学,着眼点是以学生思维和学习的进程、知识的发生过程来设计教学。
❸ 数学思想·数学方法有哪些
1
、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,
小学数学一般
是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)
与表示具体的数是一一对应。
2
、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,
然后按照题中的已
知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确
答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可
以使要解决的问题更形象、具体,从而丰富解题思路。
3
、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手
段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量
变化前后的情况,可以帮助学生较快地找到解题途径。
4
、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数
学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量
之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表
达大量的信息。如定律、公式、等。
5
、类比思想方法
类比思想是指依据两类数学对象的相似性,
有可能将已知的一类数学对
象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换
小学各年级课件教案习题汇总
一年级二年级三年级四年级五年级
律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比
思想不仅使数学知识容易理解,
而且使公式的记忆变得顺水推舟的自然
和简洁。
6
、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,
而其本身的大小
❹ 数学方法有哪些
数学方法即用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言的方法。所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序。同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法。数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法。
在中学数学中经常用到的基本数学方法,大致可以分为以下三类:
(1)逻辑学中的方法
例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等。这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色。
(2)数学中的一般方法
例如建模法、消元法、降次法、代入法、图像法(也称坐标法,在代数中常称图像法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛。
(3)数学中的特殊方法
例如配方法、待定系数法、消元法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等。这些方法在解决某些数学问题时也起着重要作用。
❺ 数学有哪些分类就是有多少种不同的研究方法
数学物理方法即偏微分,图论中的算法,计算数学中的方法,运筹学中的,还有生命周期序列,时间序列,这些课程中都有案例和说明,方法很多,其实具体的题有具体的方法,有的题貌似很难,其实你数学学的好,一看题意就知道它的考点是什么,小心陷井,一步可解
❻ 数学方法包括哪些
所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序.同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法.数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法.
数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性.
数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁精确的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具.现代科学技术特别是电子计算机的发展,与数学方法的地位和作用的强化正好是相辅相成.
在中学数学中经常用到的基本数学方法,大致可以分为以下三类:
(1)逻辑学中的方法.例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色.
(2)数学中的一般方法.例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛.
(3)数学中的特殊方法.例如配方法、待定系数法、加减(消元)法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,我们不可等闲视之.
❼ 数学的方法
数学方法 - 基本概况
所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操 作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程
数学方法运用
序.同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法.数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法.用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言的方法。无论自然科学、技术科学或社会科学,为了要对所研究的对象的质获得比较深刻的认识,都需要对之作出量的方面的刻画,这就需要借助于数学方法。对不同性质和不同复杂程度的事物,运用数学方法的要求和可能性是不同的。总的看,一门科学只有当它达到了能够运用数学时,才算真正成熟了。在现代科学中,运用数学的程度,已成为衡量一门科学的发展程度,特别是衡量其理论成熟与否的重要标志。
在科学研究中成功地运用数学方法的关键,就在于针对所要研究的问题提炼出一个合适的数学模型,这个模型既能反映问题的本质,又能使问题得到必要的简化,以利于展开数学推导。
建立数学模型是对问题进行具体分析的科学抽象过程,因而要善于抓住主要矛盾,突出主要因素和关系,撇开那些次要因素和关系。建立模型的过程还是一个“化繁为简”、“化难为易”的过程。当然,简化不是无条件的,合理的简化必须考虑到实际问题所能允许的误差范围和所用的数学方法要求的前提条件。对于同一个问题可以建立不同的数学模型,同时在研究过程中不断检验、比较,逐渐筛选出最优的模型,并在应用过程中继续加以检验和修正,使之逐步完善。从一个特殊问题抽象出来的数学模型常常具有某种程度的普遍性,这是因为一个特殊的数学模型可以发展成为描述同一类现象的共同的数学模型。已经获得广泛应用并且卓有成效的数学模型大体上有两类:一类称为确定性模型,即用各种数学方程如代数方程、微分方程、积分方程、差分方程等描述和研究各种必然性现象,在这类模型中事物的变化发展遵从确定的力学规律性;另一类称为随机性模型,即用概率论和数理统计方法描述和研究各种或然性现象,事物的发展变化在这类模型中表现为随机性过程,并遵从统计规律,而且具有多种可能的结果。客观世界的必然性现象和或然性现象并不是截然分开的。有些事物主要地表现为必然性现象,但是当随机因素的影响不可忽视时,则有必要在确定性模型中引入随机因素,从而形成随机微分方程这样一类数学模型。20世纪70年代以来,还陆续发现在一些确定性模型中,如某些描述保守系统或耗散结构的非线性方程,并不附加随机因素,但却在一定的参数范围内表现出“内在的随机性”,即出现分岔和混沌的随机行为。这类现象的机制及其数学问题已引起数学家和科学家的重视,目前正在研究中。
数学本身是不断发展的,对各种量、量之间以及量的变化之间关系的研究也在日益深入,新的数学概念、新的数学分支在不断出现,新的数学方法同样在相应地孕育和萌生。随着数学日益广泛地向各门科学渗透,与各种对象和各种问题相结合,人们正在从中提炼出各种新的数学模型,创建各种新的数学工具。尤其是电子计算机的运用使数学方法显示出新的生机,出现了所谓“数学实验方法”。这种方法的实质是不在实际客体上实验,而在其数学模型上“实验”,这种“实验”的操作就是在电子计算机上实现大量的数值运算和逻辑运算。这就使以往由于工作量大而难以进行的试算课题有可能完成。数学方法在这方面的发展前景是可观的。
数学方法 - 基本特征
数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性.
数学方法
数学方法 - 种类
在中学数学中经常用到的基本数学方法,大致可以分为以下三类:(1)逻辑学中的方法.例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色.。(2)数学中的一般方法.例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛。(3)数学中的特殊方法.例如配方法、待定系数法、加减(消元)法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,我们不可等闲视之.
数学方法 - 作用
数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁精确的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具.现代科学技术特别是电子计算机的发展,与数学方法的地位和作用的强化正好是相辅相成.
数学方法 - 发展前景
无论自然科学、技术科学或社会科学,为了要对所研究的对象的质获得比较深刻的认识,都需要对之作出量的方面的刻画,这就需要借助于数学方法。对不同性质和不同复杂程度的事物,运用数学方法的要求和可能性是不同的。总的看,一门科学只有当它达到了能够运用数学时,才算真正成熟了。在现代科学中,运用数学的程度,已成为衡量一门科学的发展程度,特别是衡量其理论成熟与否的重要标志。在科学研究中成功地运用数学方法的关键,就在于针对所要研究的问题提炼出一个合适的数学模型,这个模型既能反映问题的本质,又能使问题得到必要的简化,以利于展开数学推导。建立数学模型是对问题进行具体分析的科学抽象过程,因而要善于抓住主要矛盾,突出主要因素和关系,撇开那些次要因素和关系。建立模型的过程还是一个“化繁为简”、“化难为易”的过程。当然,简化不是无条件的,合理的简化必须考虑到实际问题所能允许的误差范围和所用的数学方法要求的前提条件。对于同一个问题可以建立不同的数学模型,同时在研究过程中不断检验、比较,逐渐筛选出最优的模型,并在应用过程中继续加以检验和修正,使之逐步完善。从一个特殊问题抽象出来的数学模型常常具有某种程度的普遍性,这是因为一个特殊的数学模型可以发展成为描述同一类现象的共同的数学模型。已经获得广泛应用并且卓有成效的数学模型大体上有两类:一类称为确定性模型,即用各种数学方程如代数方程、微分方程、积分方程、差分方程等描述和研究各种必然性现象,在这类模型中事物的变化发展遵从确定的力学规律性;另一类称为随机性模型,即用概率论和数理统计方法描述和研究各种或然性现象,事物的发展变化在这类模型中表现为随机性过程,并遵从统计规律,而且具有多种可能的结果。客观世界的必然性现象和或然性现象并不是截然分开的。有些事物主要地表现为必然性现象,但是当随机因素的影响不可忽视时,则有必要在确定性模型中引入随机因素,从而形成随机微分方程这样一类数学模型。20世纪70年代以来,还陆续发现在一些确定性模型中,如某些描述保守系统或耗散结构的非线性方程,并不附加随机因素,但却在一定的参数范围内表现出“内在的随机性”,即出现分岔和混沌的随机行为。这类现象的机制及其数学问题已引起数学家和科学家的重视,目前正在研究中。数学本身是不断发展的,对各种量、量之间以及量的变化之间关系的研究也在日益深入,新的数学概念、新的数学分支在不断出现,新的数学方法同样在相应地孕育和萌生。随着数学日益广泛地向各门科学渗透,与各种对象和各种问题相结合,人们正在从中提炼出各种新的数学模型,创建各种新的数学工具。尤其是电子计算机的运用使数学方法显示出新的生机,出现了所谓“数学实验方法”。这种方法的实质是不在实际客体上实验,而在其数学模型上“实验”,这种“实验”的操作就是在电子计算机上实现大量的数值运算和逻辑运算。这就使以往由于工作量大而难以进行的试算课题有可能完成。数学方法在这方面的发展前景是可观的。
数学方法论
主要是研究和讨论数学的发展规律,数学的思想方法以及数学中的发现、发明与创新等法则的一门学问。
数学是一门工具性很强的科学,它和别的科学比较起来还具有较高的抽象性等特征,为了有效地发展它、改进它、应用它或者把它很好地传授给学生们,就要求对这门科学的发展规律、研究方法、发现与发明等法则有所掌握,因此,数学研究工作者、数学教师、科技工作者,以及高年级大学生、研究生等都需要知道一些数学方法论”。
数学方法对于数学的发展起着关键性的推动作用,许多比较困难的重大问题的解决,往往取决于数学概念和数学方法上的突破,如历史上古希腊三大尺规作图难题,就是笛卡尔创立解析几何之后,数学家们借助解析几何,采用了RMI(关系——映射——反演)方法,才得到彻底的解决;这又启发了后来的数学家们采用类似的办法解决了欧氏几何与实数理论的相对相容性问题。又如,代数方程的根式解的问题,也是在伽罗瓦群论思想方法的指导下,才得以圆满解决;不仅如此,群论的思想方法还使得代数学的研究发生了巨大的变革,从古典的局部性研究转向了近代的系统结构整体性的研究。
对数学方法论的早期研究,十七世纪就已经开始了,法国数学家笛卡尔和德国数学家莱布尼兹都曾做过这方面的探讨,并出版过专着,历史上不少着名的大数学家,如欧拉,高斯、庞加莱、希尔伯特等人也曾就数学方法沦的问题发表过许多精辟的见解,但是,对数学方法论进行系统地研究,还是最近几十年间的事,在这方面做了突出的贡献,当首推美国数学家和数学教育家波利亚,最近几十年来.由于现代电子计算机技术已经进入了人工智能和摸拟思维的阶段,就更加促使数学方法论蓬勃发展起来;信息论,控制论、认知科学和人工智能的最新研究成果相继引进了数学方法论的领域。而徐利治先生正式提出“数学方法论”这一名称,并使其成为一门独立的学科,迄今仅二十来年。
数学科学和数学史料是数学方法论的源泉,同时,数学方法论还涉及到哲学、思维科学,心理学、一般科学方法论、系统科学等众多的领域。
数学方法论分为宏观数学方法论与微观数学方法论。
数学宏观方法论所研究的是整个数学的产生、形成和发展的规律,数学理论的构造,以及数学与其它科学之间的关系。研究宏观方法论的主要途径之一是研究数学史。研究宏观方法论的另一条主要途径是研究数学理论体系的构造。
数学微观方法论所研究的是一些比较具体数学方法,特别是数学发现和数学创造的方法。包括数学思维方法、数学解题心理与数学解题理论等等。
❽ 数学常用的数学思想方法有哪些
数学常用的数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。
1.用字母表示数的思想:这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
3.转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。
4.分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
5.类比:类比推理在人们认识和改造客观世界的活动中具有重要意义.它能触类旁通,启发思考,不仅是解决日常生活中大量问题的基础,而且是进行科学研究和发明创造的有力工具.
6.函数的思想 :辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。
7.方程:是初中代数的主要内容.初中阶段主要学习了几类方程和方程组的解法,在初中阶段就要形成方程的思想.所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用。