① 中考数学题在哪找
书店。你要是想从网上找的话,真的很费事,因为网上的资料不全并且没有答案。倒不如去书店买了。
② 中考最难的题目的出题人
中考数学题:葛军
葛军大学是南京师范大学毕业。
葛军,男,汉族,1964年10月生,江苏省南通市如东县人。教育学博士,南京师范大学兼职教授、硕士生导师。
新课标高中数学(苏教版)教材编写组核心成员,中国数学奥林匹克高级教练。曾任南京师范大学附属实验学校校长,南京师范大学教师教育学院副院长,现任南京师范大学附属中学校长,多次参与江苏高考数学卷命题,且因“试题难度大”而被称为“数学帝”。
③ 哪个省市的中考题(数学)最难
成都中考题也不好惹,因为成都中考是唯一 一个会出A、B卷的省市,所以难度也大
④ 中考pisa题是啥题目
为生存而学习——国际学生评价计划(PISA)简介
一、国际学生评价计划(PISA)概况
国际学生评价项目PISA (Programme for International Student Assessment)是经济合作与发展组织OECD(Organization for Economic Cooperation and Development)成员国的合作项目,也是目前世界上最有影响力的国际学生学习评价项目之一,其目的在于测量义务教育即将结束时,年青人(15岁)为走向社会而准备的知识和能力情况。
PISA以纸笔测验的形式测量学生的阅读能力、数学能力和科学能力,从而了解学生是否具备未来生活所需的知识和技能,同时学生还需完成一份关于他们的背景和态度的调查表。PISA每三年测试一次,每次以一方面能力为主(2/3),其他两个方面能力为辅(1/3)。2000年重点考察阅读能力,2003年的重点是数学能力,2006年则为科学能力,2009年开始第二个循环。另外,PISA在2003年还增加了问题解决能力的测试。
PISA是由OECD成员国发起并参与的,同时也吸纳其他非成员国和地区参加,中国香港、中国澳门、中国台北都已参加,中国上海计划于2009年参加。参加PISA测试的国家和地区,2000年有43个,2003年为41个,2006年有58个,每个国家或地区参与的学生人数在4500人到10000人之间。PISA在2000年、2003年2006年三次测试之后,其新颖、规范、科学的设计与严格的控制标准,引起了世界范围的广泛关注和强烈反响。PISA现在已发展成国际上最有影响力的学业评价,参与的国家和地区的GDP总量占全世界的86%。
二、国际学生评价计划(PISA)发展的背景
经济合作与发展组织OECD是一个全球性的国际组织,在经济、社会、环境、教育、公共政策等多个领域的研究,已经成为许多国家政府制定发展政策必不可少的参考。随着知识经济时代的到来,各国都需要制定国家长远的发展规划,其中十分重要的是教育发展战略,这十分需要有关对教育人力和财力的投资回报等方面可比性的信息资料。然而,迄今为止的国际测试都是关注学生对其国家某部分的公共课程掌握情况——这是一种有效但却具有局限性的成绩衡量方法,而适应各国的对教育结果进行等效和可靠的测量方法则十分缺乏。为此,1997 至2002年OECD实施了大规模的跨国研究计划,这个计划名称为《能力的界定与遴选:理论框架与概念基础.(Definition and Selection of Competencies: Theoretical and Conceptual Foundations,简称DeSeCo)》。该计划由瑞士联邦统计办公室主持,并与美国教育部国家教育统计中心及加拿大统计局合作进行。在DeSeCo基础上,发展了国际学生评价计划(PISA)。
PISA是一个合作过程,汇集了来自30多个国家和地区的世界一流水平的学术专家,在利益共享的基础上,通过OECD各成员国政府对PISA共同给予指导,合作制定了一种在不同国家和文化背景下都有可比性的、有效测量相关技能和以真实人生状况为基础的评价学生的方法。
PISA 的目的是通过一套能够测量教育结果的国际教育质量指标和对各国学生进行抽样测试所取得的结果,来描述各个国家的教育质量水平。PISA测评试图反映:(1)学校教学努力的方向和课程的优势和劣势,是否可以使学生的学习更有效?(2)什么样的教育体制和教学实践能最大限度地提高不利背景的学生的学习效果?(3)学校资源的质量在多大程度上影响学生的学习效果?……等等。更重要的是,它对广泛的测试数据进行系统分析,找出这一阶段各国学生学习能力变化的特点,以及造成这些变化的社会、经济及政策原因,从而为各个国家和地区制定更加行之有效的教育政策提供依据。
三、国际学生评价计划(PISA)的关键能力框架
毫无疑问,建立一套能在不同国家和文化背景下都有可比性的评价指标是一项非常艰巨的工作,主要是因为真正的教育“成果”是不能简单地跨国度来测量的。我们可以研究人们在教育上花了多少时间,或是看有多少学生通过了有可比性的级别考试。但是因为这些测试在各个国家是不同的,所以不能真正比较每一个教育系统的状况。尤其是在考虑各国的文化方式时,则更为困难,如日本学校培养出的以一种方式思考的成年人,也许是适合日本社会的;瑞士学生的思维方式可能是适应瑞士社会的,谁能说哪一个“更好”呢?为克服以往教育对学生评价的不足与缺陷,满足社会发展对人力资本的质量监控要求,DeSeCo从一个全新的角度展开了对人力资本的测量与评价,即评价学生现实生活和终身学习所必须的知识和技能。
⑤ 什么是PISA试题
PISA(Program for International Student Assessment)(国际学生评估项目的缩写)是一项由经济合作与发展组织统筹的学生能力国际评估计划。
主要对接近完成基础教育的15岁学生进行评估,测试学生们能否掌握参与社会所需要的知识与技能。
PISA测试的重点是看学生全面参与社会的知识和技能,对学生阅读、数学和科学能力的考察并不限于书本知识,还包括成年人生活中需要的知识和技能。
(5)哪里中考数学pisa题最多扩展阅读
第一次PISA评估于2000年首次举办,此后每3年举行一次。评估主要分为3个领域:阅读素养、数学素养及科学素养,由这3项组成一评估循环核心,
在每一个评核周期里,有2/3的时间会对其中一项领域进行深入评估,其他两项则进行综合评测。2012年首次尝试引入了基于计算机的问题解决测试。
上海学生日前参加由经济合作与发展组织(OECD)进行的2009年第四次国际学生评估项目(PISA)测试中取得阅读数学科学素养第一的佳绩,引发外界持续关注。
⑥ 今年哪个地区中考数学最难(本人是山东泰安的,认为今年中考数学挺难的,最后几个题都没怎么做完。)
东营异常简单,不过个人觉得青岛很难
⑦ 中考试卷每一科哪一个年级的题多是不是初三的要多些
你好:希望我的解答能帮到你
要是比较啊,初三分数值的确占得多。知识都是连贯性的,没有前两年的知识点,初三的分数也拿不到。因为在初中三年当中,初三是知识的顶峰。比如数学初二学习一次函数,一元一次方程,在它们的基础上,初三升级成了二元一次方程,二次函数。初二的基础没打好,自然初三试题的分数也很难得满分!!!到高中时,在二次函数基础上又加强学习了三角函数,函数方程等。
中考考察的是三年所有的(90%以上)知识。没有重复题型,每道题型考察的知识点也不同。比如角、三角形(初一)和圆(初三)的结合。考察了学生初中所学的知识,这也就是中考试题的全面性。
⑧ 求近两年的中考数学的压轴题
1、已知二次函数
(1)当时,函数值随的增大而减小,求的取值范围。
(2)以抛物线的顶点为一个顶点作该抛物线的内接正三角形(,两点在抛物线上),请问:△的面积是与无关的定值吗?若是,请求出这个定值;若不是,请说明理由。
(3)若抛物线与轴交点的横坐标均为整数,求整数的值。
2、如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,
OC=4,抛物线经过A,B两点,抛物线的顶点为D.
(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线
交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形? 若存在,求出所有点P的坐标;若不存在,说明理由.
3.(本题满分12分)如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.
(1)当t≠1时,求证:△PEQ≌△NFM;
(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.
4、如图,抛物线与轴交于(,0)、(,0)两点,且,与轴交于点,其中是方程的两个根。
(1)求抛物线的解析式;
(2)点是线段上的一个动点,过点作∥,交于点,连接,当的面积最大时,求点的坐标;
(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。5、情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是 ▲ ,∠CAC′= ▲ °.
问题探究
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,并说明理由.
6.(本题满分12分)如图,已知一次函数y = - x +7与正比例函数y = x的图象交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.
7、(2011·济宁)如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3。
(1) 设点P的纵坐标为p,写出p随k变化的函数关系式。
(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP。请你对于点P处于图中位置时的两三角形相似给予证明;
(3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由。
8.(南京)(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
⑴当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.
9.(9分)如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.
⑵在△ABC中,∠A<∠B<∠C.
①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);
②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.
10.(11分)
问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为.
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
填写下表,画出函数的图象:
x …… 1 2 3 4 ……
y …… ……
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.
11、(本题12分)
已知两直线,分别经过点A(1,0),点B,
并且当两直线同时相交于y正半轴的点C时,恰好有
,经过点A、B、C的抛物线的对称轴与直线
交于点K,如图所示。
(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线,抛物线,直线和x轴
依次截得三条线段,问这三条线段有何数量关系?请说明理由。
(3)当直线绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标。
12.(2011年广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW。设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒。试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段)。试问x为何值时,△PQW为直角三角形?
当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值。
13.(2011年桂林市)本题满分12分)已知二次函数的图象如图.
(1)求它的对称轴与轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴,轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
14、(10分)如图,已知抛物线与轴交于A(1,0),B(,0)两点,与轴交于点C(0,3),抛物线的顶点为P,连结AC.
(1)求此抛物线的解析式;
(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与轴交于点Q,求点D的坐标;
(3)抛物线对称轴上是否存在一点M,使得S△MAP=2S△ACP,若存在,求出M点坐标;若不存在,请说明理由.
15. (本题满分10分) 如图1,把一个边长为2的正方形ABCD放在平面直角坐标系中,点A在坐标原点,点C在y轴的正半轴上,经过B、C、D三点的抛物线c1交x轴于点M、N(M在N的左边).
(1)求抛物线c1的解析式及点M、N的坐标;
(2)如图2,另一个边长为2的正方形的中心G在点M上,、在x轴的负半轴上(在的左边),点在第三象限,当点G沿着抛物线c1从点M移到点N,正方形随之移动,移动中始终与x轴平行.
①直接写出点C’、D’移动路线形成的抛物线C(C’)、C(D’)的函数关系式;
②如图3,当正方形第一次移动到与正方形ABCD有一边在同一直线上时,
求点G的坐标.
16.(本题满分12分)如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动。设PQ交直线AC于点G。
(1)求直线AC的解析式;
(2)设△PQC的面积为S,求S关于t的函数解析式;
(3)在y轴上找一点M,使△MAC和△MBC都是等
腰三角形。直接写出所有满足条件的M点的坐标;
(4)过点P作PE⊥AC,垂足为E,当P点运动时,
线段EG的长度是否发生改变,请说明理由。
17.如图1,正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动.设运动时间为t(s).
(1)求正方形ABCD的边长.
(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(s)之间的函数图像为抛物线的一部分(如图2所示),求P,Q两点的运动速度.
(3)求(2)中面积S(平方单位)与时间t(s)的函数解析式及面积S取最大值时点P的坐标.
(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小.当点P沿着这两边运动时,能使∠OPQ=90°吗?若能,直接写出这样的点P的个数;若不能,直接写不能.
1、已知二次函数
(1)当时,函数值随的增大而减小,求的取值范围。
(2)以抛物线的顶点为一个顶点作该抛物线的内接正三角形(,两点在抛物线上),请问:△的面积是与无关的定值吗?若是,请求出这个定值;若不是,请说明理由。
(3)若抛物线与轴交点的横坐标均为整数,求整数的值。
2、如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,
OC=4,抛物线经过A,B两点,抛物线的顶点为D.
(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线
交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形? 若存在,求出所有点P的坐标;若不存在,说明理由.
3.(本题满分12分)如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.
(1)当t≠1时,求证:△PEQ≌△NFM;
(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.
4、如图,抛物线与轴交于(,0)、(,0)两点,且,与轴交于点,其中是方程的两个根。
(1)求抛物线的解析式;
(2)点是线段上的一个动点,过点作∥,交于点,连接,当的面积最大时,求点的坐标;
(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。5、情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是 ▲ ,∠CAC′= ▲ °.
问题探究
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,并说明理由.
6.(本题满分12分)如图,已知一次函数y = - x +7与正比例函数y = x的图象交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.
7、(2011·济宁)如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3。
(1) 设点P的纵坐标为p,写出p随k变化的函数关系式。
(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP。请你对于点P处于图中位置时的两三角形相似给予证明;
(3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由。
8.(南京)(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
⑴当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.
9.(9分)如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.
⑵在△ABC中,∠A<∠B<∠C.
①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);
②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.
10.(11分)
问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为.
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
填写下表,画出函数的图象:
x …… 1 2 3 4 ……
y …… ……
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.
11、(本题12分)
已知两直线,分别经过点A(1,0),点B,
并且当两直线同时相交于y正半轴的点C时,恰好有
,经过点A、B、C的抛物线的对称轴与直线
交于点K,如图所示。
(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线,抛物线,直线和x轴
依次截得三条线段,问这三条线段有何数量关系?请说明理由。
(3)当直线绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标。
12.(2011年广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW。设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒。试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段)。试问x为何值时,△PQW为直角三角形?
当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值。
13.(2011年桂林市)本题满分12分)已知二次函数的图象如图.
(1)求它的对称轴与轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴,轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
14、(10分)如图,已知抛物线与轴交于A(1,0),B(,0)两点,与轴交于点C(0,3),抛物线的顶点为P,连结AC.
(1)求此抛物线的解析式;
(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与轴交于点Q,求点D的坐标;
(3)抛物线对称轴上是否存在一点M,使得S△MAP=2S△ACP,若存在,求出M点坐标;若不存在,请说明理由.
15. (本题满分10分) 如图1,把一个边长为2的正方形ABCD放在平面直角坐标系中,点A在坐标原点,点C在y轴的正半轴上,经过B、C、D三点的抛物线c1交x轴于点M、N(M在N的左边).
(1)求抛物线c1的解析式及点M、N的坐标;
(2)如图2,另一个边长为2的正方形的中心G在点M上,、在x轴的负半轴上(在的左边),点在第三象限,当点G沿着抛物线c1从点M移到点N,正方形随之移动,移动中始终与x轴平行.
①直接写出点C’、D’移动路线形成的抛物线C(C’)、C(D’)的函数关系式;
②如图3,当正方形第一次移动到与正方形ABCD有一边在同一直线上时,
求点G的坐标.
16.(本题满分12分)如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动。设PQ交直线AC于点G。
(1)求直线AC的解析式;
(2)设△PQC的面积为S,求S关于t的函数解析式;
(3)在y轴上找一点M,使△MAC和△MBC都是等
腰三角形。直接写出所有满足条件的M点的坐标;
(4)过点P作PE⊥AC,垂足为E,当P点运动时,
线段EG的长度是否发生改变,请说明理由。
17.如图1,正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动.设运动时间为t(s).
(1)求正方形ABCD的边长.
(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(s)之间的函数图像为抛物线的一部分(如图2所示),求P,Q两点的运动速度.
(3)求(2)中面积S(平方单位)与时间t(s)的函数解析式及面积S取最大值时点P的坐标.
(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小.当点P沿着这两边运动时,能使∠OPQ=90°吗?若能,直接写出这样的点P的个数;若不能,直接写不能.
⑨ 2013宁波中考数学压轴题
⑩ 中考数学压轴题的书哪本好
介于不知道你是哪个地方的、如果是成都这边的话建议你去买(五年中考3年模拟)
这本书呢、不光是中考压轴题、成都的数学题的话、应该在全国排前十、这书就是全为成都中考题、每个地方的中考题每年都是新题的、只有多做以前的题、增加解题技巧、解题速度、才是关键、黄冈那本书也可以、因为黄冈那个地方时全国出中考题的专家一起研究的地方、出的题呢、在全国算最难吧、也很多新题、有些地方的中考压轴题就是从那上面的一些题改编的、所以推荐你《五年中考三年模拟》和《黄冈试卷》(至于黄冈名字对不对不清楚了、不好意思)
希望有帮助