‘壹’ 简述古埃及和美索不达米亚数学的共同特征
美索不达米亚文明最早由苏美尔人创建.由于该地区土壤肥沃且所地理位置特殊,他们常常受到外族如北面的印欧人和南面的闪米特人的侵略.也正因如此,苏美尔人为了保护自己,使自己不断壮大,才造就了灿烂的两河流域文明.由于位于两河流域的中下游地区,洪的不定期泛滥以及常常受到外族侵略的威胁,使苏美尔人觉得自己正无依无靠地面对许多自己无法控制的超自然力量.这也是美索不达米亚人的人生观带有悲观彩的原因.他们认为人生来就是为神服务的,人无法预知神的行为和意志.这就促了占星术的出现.他们常常通过观察并记载星辰的运动并进行分析来“预言”神的意志.
‘贰’ 古埃及和古巴比伦数学的主要成就分别是什么,并比较二者的异同点
古代巴比伦人是具有高度计算技巧的计算家,其计算程序是借助乘法表、倒数表、平方表、立方表等数表来实现的。巴比伦人书写数字的方法,更值得我们注意。
他们引入了以60为基底的位值制(60进制),希腊人、欧洲人直到16世纪亦将这系统运用于数学计算和天文学计算中,直至现在60进制仍被应用于角度、时间等记录上。
‘叁’ 古巴比伦和古埃及数学的优劣
作为两大文明古国,古巴比伦和古埃及在数学方面都让蛮夷之地有了数学之灵光的闪烁。从他们的历史中可以看出,数学起初只是一种工具,或者是为计算历法,以便掌握更为精确的时间来拜祭神灵;或者是为计算赋税,以便更为准确地收取土地赋税。古巴比伦和古埃及的数学始终是重算法而轻推理,或许他们根本就没去考虑严密的推理,而仅是注重计算的技巧和实用性。 古巴比伦和古埃及都做了一些数的表示的尝试,虽然不如现代的简洁明了,但古巴比伦人的数制也像今日所用一样,是由许多历史条件和地区习惯形成的混合数制,不过他们在数学和天文上更加亲睐于60进制,楔形文字记录了这些;古埃及的计数是以10为基底的。他们都对数的加减运算有了一些认识,对乘法也有一些计算技巧,却未成体系,他们没有除法的概念,例如1/2在他们的理解中是一个数字,他们用巧妙却繁琐的连分数弥补了没有除法的这一空缺。 古巴比伦和古埃及的代数也有一些发展,他们可以解一些二次方程,古巴比伦人甚至给出了一些五次方程的非常精确的近似解,但他们的解法依然带有很强的技巧性,而且从未讨论方程解的存在性。这些类似于今天的代数方程机械解法,只论算法而不计算理。 古巴比伦和古埃及对几何也有一些探索,这在于其政府官员需征收土地的赋税,需要精确计算各种形状土地的面积。他们也能够计算一些三角形,四边形,甚至是圆的面积,其中圆面积用的是近似解,但逼近程度已经很高。同样,在这些过程中他们依然是非常讲究技巧,但没有严格的推理。 因此,可以看的出来,数学的最初发展并不像现代数学一样抽象,而是非常具体的实际问题的需求下应运而生的。最初的数学也仅仅是一种解决问题的工具,其自身并非是一门学科,最多也只是一种非常有效的计算工具而已,这一时期所谓的数学家也只是技术娴熟的计算师,他们从不探索其中的严格推理,直到希腊数学学派的出现这一现象才有所改观。 古巴比伦人和古埃及人,从巧妙的算法中打开了人类对数学的探索之门,他们的符号计数则为后人的数学乃至整个生活都带来了巨大的变化和方便。
‘肆’ 埃及和古巴比伦有哪些特色
【埃及特色】
古埃及文明是四大古文明之一。古埃及人除了建筑金字塔、狮身人面像及制造木乃伊而闻名天下外,还发明了许多对后世影响深远的东西。
古埃及的文化非常丰富。创造的象形文字对后来腓尼基字母的影响很大,而希腊字母是在腓尼基字母的基础上创建的。此外,金字塔、亚历山大灯塔、阿蒙神庙等建筑体现了埃及人高超的建筑技术和数学知识,在几何学、历法等方面也有很大的成就。
【古巴比伦特色】
古巴比伦王国(约公元前3500年左右-公元前729年)位于美索不达米亚平原,有流传最早的史诗、神话、药典、农人历书等,是西方文明的摇篮之一。有空中花园,但都成废墟。
古巴比伦文明是两河流域文明中的典范,发源于公元前4世纪之后,是由苏美尔人、巴比伦人、亚述人和迦勒底人共同建造而成。共经历了四个主要的阶段,第一阶段是苏美尔人在公元前2250年左右创造的文化。除了的楔形文字外,为了应付两河流域经常泛滥的状况,减少灾难,苏美尔人还发明了观测天象的太阴历,在这部历法中,苏美尔人利用月亮阴晴圆缺的规律,把一年定为365天,划分为12个月,一昼夜分为12时,并第一次使用了闰月,而且设立7天为一周。大约在公元前一千八百年前,巴比伦人就会分数。加减乘除四则运算和解一元二次方程。当然还有两项最重要的发明不能不提及:一项是十进位法及六十进位法的发明,另一项就是苏美尔计算出了π 的值近似3,是不可缺少的部分。
古巴比伦王国是“四大文明古国”(“四大文明古国”分别是中国、古巴比伦、古埃及、古印度)。四大古国文明的意义并不在于时间的先后,而在于它们是现代文明的起源地。古巴比伦文明是两河流域文明的重要组成部分,两河流域文明还包括苏美尔文明、阿卡德文明、亚述等重要组成部分。
‘伍’ 埃及数学的特点是什么
一个民族的数学知识首先是从数字开始。在古埃及有很系统的表示数字的方法,这也是他们能够完成像金字塔这样的大工程的基础之一。
古埃及人没有零的概念,他们记述从1到9都用画竖的方式来代表。1就是一竖,9就是九竖,从10开始就用物品来代替了。10是一段绳子,而一卷绳子表示100。荷花代表1000,一根手指代表10000,蝌蚪代表100000,而一个举着双手的人代表着1000000。在表示5000000的时候,古埃及人并不是用5道竖加一个举手的人,而是把那个举手的人重复画5次。这稍微有一点复杂,不过也算是一种习惯,而且相当精确。
除了数字,古埃及人还会用精确的方法表示分数,他们用在这个符号下面写数字的方式表示这个分数是多少分之一。对一些特殊的分数,他们用特殊的符号表示,这些符号据说来自一个神话传说,比如1/2,1/4,1/8,1/16,1/32和1/64。
传说鹰神荷鲁斯在为自己的父亲奥西里斯复仇的时候与他的歹毒叔父塞特发生了一场惨烈的战斗。战斗中塞特挖掉了荷鲁斯的一只眼珠,并把它撕成了碎片,这些分数就用这些碎片表示。比如眼睛的一部分为1/2,眼珠表示1/4,眼眉表示1/8等,有意思的是这些数字加起来并不是一只完整的眼睛而是63/64。古埃及人也一定计算出了这个结果,他们说丢掉的那1/64由智慧之神填补。
在表示一些分子不为1的分数时,古埃及人用分数相加来表示,比如2/5就是由1/3和1/15的和来表示。从这种分数的表示方法,我们就很轻易地得出结论:古埃及人已经熟练地掌握了分数的加减。
这些知识主要来自两张纸莎草文书:一片叫做莫斯科草片文书,一共25题。另外一片叫做莱茵德草片文书,这也是记录古埃及数学常识的最着名的一片文书,共有85题之多。是英国人HenryRhind于1858年发现的,现存大英博物馆。因为作者是一个叫Ahmes的人,所以又叫Ahmes草片文书。它的开篇有一句很有意思的话:获知一切奥秘的指南。如果单看这句话很容易把这片纸草误认为埃及版的“十万个为什么”。
对于这两片纸草,有人认为它是小学生的练习本,有人则认为是学校的教科书,不管是什么,我们都能从中管窥古埃及的数学水平。
在Ahmes草片文书的第31题,记录了一个一元一次方程:一个数字,它的2/3,它的1/2,它的1/7和它的全部加起来等于33。这个题目没有问答,但意思显然是让我们求解这个数字,这样的题目即便放到现在,没有初中一年级的代数知识,也是很难回答的,而且它的答案也是一个分数。
从这张纸草的第63题,可以看出数学的目的还是服务于生活的,这个题目是这样的:把700块面包分给4个人,第一个人得2/3,第二个人得1/2,第三个人得1/3,第四个人得1/4。这个题目给出了计算方法,而且有正确的答案。
不过我们还是很轻易地看到了编写过程中的漏洞,得出的这个结果是400,也就是说第一个人得到的是400的2/3,而不是那700块面包的2/3,这不符合我们把总数定为“1”的习惯。而且第一个人得当了400的2/3也不是一个整数,看来要真分这些面包,他还是要另掰一块带回去的了,现在我们在教案编写上已经知道避免这样的问题了。
古埃及人没有专门的乘除符号,他们用一双走近的腿表示相加,离开的腿自然是减号。他们的乘除法计算也是以加减法为基础的,这其实很符合乘除法的计算原理。
因为要丈量土地面积,所以他们在面积计算方面的公式非常准确。圆形和四边形的面积和现在的计算结果非常近似,圆周率一般近似地取3。因为金字塔是一种棱锥体,他们同样掌握了计算棱锥体的体积公式,这对采集石料有理论上的指导意义。
古埃及的长度单位是腕尺,1腕尺等于从肘至中指尖的长度,约合20.62英寸。当然并不是每个人的肘到中指尖都是20.62英寸,这很可能是某位法老定下来的,具体是哪一位则不甚详细。
‘陆’ 中国古代、古埃及、古巴比伦、古罗马的数字特点是什么急急急
罗马数字是古罗马使用的数字系统,现今仍很常见。 (手表一般用的都是这个)
I - 1
II - 2
III - 3
IV - 4
V – 5
VI - 6
VII – 7
VIII - 8
IX - 9
X – 10
XI – 11
XII – 12
古埃及的数字是象形文字,欧洲人成为神的文字,可参考维基网络http://zh.wikipedia.org/zh-cn/%E5%8F%A4%E5%9F%83%E5%8F%8A%E6%95%B0%E5%AD%97
古巴比伦数字全都是三角形(........)
1就是一个三角形,2就是两个三角形(.......)
中国古代数字就是算筹,好像在九章算术里就是用的算筹。
就是这样了,还有不懂的请追问,拜托采用我的吧,谢谢
‘柒’ 四大河谷文明早期数学的特点
历史学家往往把兴起于埃及、美索不达米亚、中国和印度等地域的古代文明称为“河谷文明”。
早期数学,就是在尼罗河、底格里斯河与幼发拉底河、黄河与长江、印度河与恒河等河谷地带首先发展起来的。从可以考证的史料看,古埃及与美索不达米亚的数学在年代上更为久远,只是在公元前均告衰微,崛起稍晚的中国与印度数学则延续到纪元之后并在中世纪臻于高潮。
1、数与形概念的产生。
记数法:手指计数,石头记数,结绳记数,刻痕记数,书写记数。
早期的记数系统:古埃及的象形数字,巴比伦楔形数字,中国甲骨文数字(最早的十进位制),希腊阿提卡数字,中国筹算数字,印度婆罗门数字,玛雅数字。
几何学的起源 古埃及:丈量土地 古印度:宗教实践 古中国:天文观测
2、美索不达米亚数学(巴比伦数学) 主要成就:60进制的位值记数法,数学用表(平方、开方),面积和体积计算,联立方程组,够股数。
3、埃及数学 古文字有3种:象形文字,僧侣文,通俗文。莱因德纸草书(84个问题) 莫斯科纸草书(25个问题)
算数与代数种有特色的成果:记数符号、单位分数、倍乘法、除法、二次方程组、几何级数(有限项)、算术级数。
几何成果:历法、面积(三角形、梯形、矩形)与体积公式
4、中国古代数学 算筹记数:十进位制、四则运算、高位算起
甲骨文记载:序数概念,用一到十、百、千、万共13个单字记10万以内数(河南安阳出土)
《周易》即《易经》 河图(1~10)洛书(1~9)二进制
《墨经》:点、线、面、体、圆的描述与部分性质,分数——半数、少半、多半
《庄子 天下篇》极限思想 “一尺之锤,日取其半,万世不竭”
《史记》运筹思想“运筹策于帷幄之中,决胜于千里之外”
《孙子兵法》运筹观念运用 “田忌赛马”
‘捌’ 试概述数学发展的各个时期的特点
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程。而其后更发展出更加精微的微积分。
现时数学已包括多个分支。创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论、结构,就是以初始概念和公理出发的演绎系统。他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)。
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。
就纵度而言,在数学各自领域上的探索亦越发深入。
(8)古埃及巴比伦数学的特点是什么扩展阅读:
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。
除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年,算术(加减乘除)也自然而然地产生了。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普。历史上曾有过许多各异的记数系统。
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算。数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备,但尚未出现极限的概念。
17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展。
参考资料来源:
网络-数学
‘玖’ 古巴比伦的数学
美索不达米亚数学发展史
亚洲西部的底格里斯河与幼发拉底河之间的 两河流域,古称为“美索不达米亚”。公元前十九世纪,这里建立了巴比伦王国,孕育了巴比伦文明。
考古学家在十九世纪上半叶于美索不达米亚 挖掘出大约50万块刻有楔形文字、跨跃巴比伦历史许多时期的泥书板。其中有近400块被鉴定为载有数字表和一批数学问题的纯数学书板,现在关于巴比伦的数学知识就源于分析这些原始文献 。
算术
古代巴比伦人是具有高度计算技巧的计算家 ,其计算程序是借助乘法表、倒数表、平方表、立方表等数表来实现的。巴比伦人书写数字的方法,更值得我们注意。他们引入了以60为基底的位值制(60进制),希腊人、欧洲人直到16世纪 亦将这系统运用于数学计算和天文学计算中,直至现在60进制仍被应用于角度、时间等记录上。
代数
巴比伦人有丰富的代数知识,许多泥书板中 载有一次和二次方程的问题,他们解二次方程的过程与今天的配方法、公式法一致。此外,他们还讨论了某些三次方程和含多个未知量的线性方程组问题。
在1900B.C.-1600B.C.年间的一块泥板上(普林顿322号),记录了一个数表,经研究发现其中有两组数分别是边长为整数的直角三角形斜 边边长和一个直角边边长,由此推出另一个直角边边长,亦即得出不定方程X2+Y2=Z2 的整数解。
“普林顿322”泥书板
“普林顿322”摹真图
几何
巴比伦的几何学与实际测量是有密切的联系 。他们已有相似三角形之对应边成比例的知识,会计算简单平面图形的面积和简单立体体积。我们现在把圆周分为360等分,也应归功于古代巴比伦人。巴比伦几何学的主要特征更在于它的 代数性质。例如,涉及平行于直角三角形一条边的横截线问题引出了二次方程;讨论棱椎的平头截体的体积时出现了三次方程。
古巴比伦的数学成就在早期文明中达到了极 高的水平,但积累的知识仅仅是观察和经验的结果,还缺乏理论上的依据。
‘拾’ 浅谈埃及和古巴数学的各自特点
一、古埃及的数学
古代埃及人凭借尼罗河沿河两岸的沃土,用他们的智慧独立地创造出了灿烂的古代文化.远在公元前4000年以前的古埃及的文明,已经有了象形文字,大约于公元前3000年左右,埃及成为统一的奴隶制国家.根据现在保存在英国牛津Ashmolean博物馆的古埃及第一王朝时期(约公元前3400年以前)一个王室的权标上象形文字的记载,当时一次胜仗曾俘获过120000名俘虏,400000头牛,1422000头羊.这表明当时埃及人已能用象形文字表示大的数目.
1.古埃及人的记数法
古埃及人是用以10为基的象形数字记数的
介于其间的各数由这些符号的组合来表示,书写方式是从右往左.所以 表示为32.
尽管埃及是最早采用10进数制的国家之一,由于没有采用位置记数的方法,这样就给记数带来了麻烦(详见第三节).
古埃及人用纸草作为书写材料,纸草是尼罗河三角洲沼泽地盛产的一种水生植物,把这种草的茎依纵向剖成小薄片,然后压平晒干使之成为纸卷,可用于书写.由于埃及地区气候干燥,因此有些纸草能幸运地保存至今.其中有两卷纸草记录了古埃及数学资料.它们都产生于公元前1700年左右.一卷称为莫斯科纸草(图1-1),其中含有25个数学问题,由俄国人戈兰尼采夫(голенищев)于1893年在埃及发现,现存于莫斯科美术博物馆.另一卷称为兰德纸草(图1-2)由英国人兰德(A.Henry.Rhind)于1858年在埃及购买的,后收藏于英国博物馆.因纸草是由埃及人阿默士(Ahmes)从公元前3000年的文献中抄写下来,记录着85个数学问题的抄本,所以又称为阿默士纸草.这两卷纸草是现在我们研究古埃及数学的主要来源.
2.古埃及人的算术知识
在莫斯科和兰德纸草中记载的110个数学问题多半来源于实际计算.由于任何一个自然数都可以由2的各次幂的和组成.因此我们可以发现古埃及人的计算技术具有迭加的特征.
通常进行加减法运算时,他们用添上或拆掉一些数字记号求得结果,而进行乘法或除法运算时,则需要利用连续加倍的运算来完成.
例如,计算:27×31.
因为27=20+21+23+24=1+2+8+16,
于是只要把31的这些倍数加起来,即可求得27×31的积.其作法如下:
把那些带有*号的31的倍数加起来,即得积837.
又如计算:745÷26.
只要连续地把除数26加倍,直到再加倍就超过被除数745为止.其程序如下:
∵745=416+329
=416+208+121
=416+208+104+17.
从上述带有(*)号的各项,便可得出,其商为16+8+4=28,其余数为17.
古埃及算术最可注意的方面是分数的记法和计算.
古埃及人通常用单位分数(指分子为1的分数)的和来表示分数.
兰德纸草里有个数表,它把分子为2而分母为5到100的奇数的这类分数,表达成为单位分数的和
用现代的记号,其首末几行可表示为:
这样古埃及人就可以利用这张表进行分数运算了.
例如要用5除以21.运算程序可以如下地进行:
由于整数与分数的运算都较为繁复,古埃及算术难以发展到更高的水平.
3.古埃及的代数
在兰德纸草上有一个方程问题:“有一堆(古埃及人把未知数称为
在莫斯科纸草上有一个面积问题:“把一个面积为100的正方形分为两个小正方形,使其中一个的边长是另一个的四分之三”,写成现在的形式为
中并没有说明为什么要这样做.
在兰德纸草中还出现了有关算术级数的问题:“ 5个人分100个面包,要求每个人所得的份数构成一个算术级数”.纸草作者先令公差为
由上所述,古埃及人虽然能解决相当于今天解方程的问题,但实质上用的是纯粹算术的方法,还没有出现代数语言.并不存在解方程的概念.
4.古埃及的几何
古代埃及人留下了许多气势宏伟的建筑,其中最突出的是约公元前2900年兴建于下埃及的法老胡夫的金字塔,高达146.5米,塔基每边平均宽230米,任何一边与此数值相差不超过0.11米,正方程度与水平程度的平均误差不超过万分之一.与金字塔媲美的另一建筑群是上埃及的阿蒙神庙.其中卡尔纳克的神庙主殿总面积达5000平方米,有134根圆柱,中间最高的12根高达21米.这些宏伟建筑的落成,离不开几何学知识.
另一方面,几何学也起源于古埃及的农业.在兰德纸草中有19个关于土地面积和谷仓容积的计算问题.表明当时的埃及人已经会正确计算矩形、三角形和梯形的面积,并能对其他一些几何图形采用近似计算法,例如在求任意见边形的面积时,出现过近似公式:
古埃及人很可能已经知道了后来称为毕达哥拉斯定理的个别特殊情况.例如,埃及人可能已知:把12个单位长的绳子用结分成长为3、4、5个单位的三段,可以用来构造直角,但是这种推测尚未被学者所公认.
在兰德纸草上有一个求圆形土地面积的例子.他们把圆面积表示为
约为3.1605……,与π值的误差仅约为0.6%.
对立方体、柱体等体积的计算,他们给出一些计算的法则,其中有比较准确的也有较为粗略的.值得注意的是,在莫斯科纸草中有一个正四棱台的体积的具体计算方法上、下底面和中截面的面积之和乘以高的
其中,a、b分别是上、下底面正方形的边长,h是高.
这个计算与我们现在所用的公式完全相同,可以说这是埃及几何中最出色的成就之一.
二、古代巴比伦的数学
公元前4000年左右,生活在西亚的底格里斯河和幼发拉底河之间的地带,即“美索波达米亚”地区的人民相继创造了西亚上古时期的文明,已经有了象形文字,大约于公元前1900年形成了奴隶制的巴比伦王国.
从19世纪前期开始,在美索波达米亚工作的考古学家们进行了系统的挖掘工作,发现了大约50万块刻写着文字的“泥板”.古巴比伦人用一种断面呈三角形的笔在粘土板上刻出楔形的痕迹,称为楔形文字,这种泥板经晒干或烘烤之后,遂被长时间地、完整地保留了下来.现在世界上许多博物馆,如着名的伦敦、巴黎、柏林等博物馆中都收藏有许多这类泥板.在发掘出来的50万块泥板中,约有400块是数学泥板,其中记载有数字表和数学问题.
1.古代巴比伦的记数法与六十进位制
古代巴比伦人借助于符号 和 ,可以表示所有的整数,如:
巴比伦数系的特点是六十进位制.地质学家W·K·劳夫特斯于1854年发掘出两块泥板(称为森开莱泥板)其中一块上面刻着一个数列,用现代符号来写,前七个数是1,4,9,16,25,36,49.显然这是一个自然数平方的数列.49以下自然应该是64,81,….但记载的却是1·4,1·21…直到58·1.这个问题只有在六十进位记数制中才能得到妥善的解释:
1·4=1×60+4=64=82,
1·21=1×60+21=81=92,
58·1=58×60+1=3481=592.
由上所述,古代巴比伦人已经懂得了用相同的符号可以按其位置不同来表示不同的数值,这种60进位的位值制记数法,是一项重要的贡献.但
至于巴比伦人为什么要采用六十进位制呢?现代人们有种种的推测:一般认为60是许多简单数字如2,3,4,5,6,10,12,…
化为较大单位时成为整数.也有的认为60=12×5,12是一年包含的月数,5是一只手的手指数.
2.古代巴比伦人的算术运算
巴比伦人对于加减法的运算只不过是加上或去掉些数字记号而已,加法没有专门的记号,减法用 记号表示,例如 表示40-3,关于乘法,巴比伦人是在整数范围内进行的,其记号是 ,如果要计算36×5,他们的做法是30×5+6×5.这可以看作是乘法分配律的萌芽.为了便于计算,他们大约在公元前2000年以前已经编制了从1×1到60×60的乘法表,并用来进行乘法运算了.
关于除法,巴比伦人进行的是整数除以整数的运算,这种运算可以采用与倒数相乘的办法来进行,于是经常要使用分数.在巴比伦人遗留
化为有限位的六十进制“小数”.这个倒数表可以用现代的记号表示为
2 30
3 20
……
1 20 45
1 21 44 26 40
其意思是
……
除了乘除法之外,巴比伦人还能借助于泥板上的数表来进行平方、 但是还没有根据证明他们已认识了无理数.
3.巴比伦的代数知识
大约于公元前2000年,古代巴比伦人已能使用代表抽象概念的代数语言,可能由于许多代数问题都与几何有关,因此他们常常用“长”,“宽”,“面积”来代表未知数和它们的乘积等.
例如“给定矩形的周长和面积,试求边长”也就是相当于求解方程组
早期巴比伦代数中的一个基本问题是:“求一个数,使它和它的倒数之和等于一个给定的数.”用现代的记号来写就是
对于这个二次方程,他们给出的答案相当于
由于当时还没有负数的概念,所以负根略去不记,这表明巴比伦人实际上已经会解二次方程了.
通过解二次方程可以求解一些高次方程.例如“我把长乘宽的面积10,我把长自乘的面积,我把长大于宽的量自乘,再把这个结果乘以9,这个面积等于长自乘所得的面积,问长和宽各是多少?”
用现代的记号表示为方程组
在求复利问题的时候,甚至巴比伦人还能解指数方程.例如“有一笔钱,利息率为每年20%,问经过多长时间以后利息与本金相等?”这实际上是求解指数方程
(1.2)x=2.
上述例子表明古代巴比伦在代数学上的成就确实很高.
纽格包尔(Otto Neugebauer)和萨克斯(Sachs)于1945年对收藏在哥伦比亚大学普林顿收藏馆的第322号巴比伦数学泥板(简称为普林顿322号)作了成功的解释.普林顿322号包括基本上完整的三列数字.左边应该还有第四列数,但已佚失.将它用现代十进位符号改写,得到图1-3.显然最右边的那一列只不过是用来表示行数的,他们两人还发现:两列中的对应数字(除了四个例外)正好构成一个边长为正整数的直角三角形的斜边(图1-3中的中间一列)和一个直角边.在图1-3中带括号的四个值是例外值,放在经我们改正的数字的右边.
现在人们把象(3,4,5)这样一组能作为一个直角三角形的边的正整数称为毕达哥拉斯数(简称为毕氏三数)如果这样一组数除了1以外,没有其他公因子,则就称它为素毕氏三数.(3,4,5)是素毕氏三数,而(6,8,10)则不是.
现在我们已经证明了所有的素毕氏三数(a,b,c)能用下列参数式表达:
a=2uv,b=u2-v2,c=u2+v2.
这里,u和v互素,奇偶性不同,并且u>v,例如,u=2,v=1则得素毕氏三数a=4,b=3,c=5.
假定我们用普林顿322号数学泥板上给出的斜边c和直角边b来确定那个边为正整数的直角三角形的另一边a,则得如图1-4的毕氏三数.我们还注意到,图1-4中的毕氏三数,除了第11行和第15行外,都是素毕氏三数.为了便于研究和讨论,我们也列出了这些毕氏三数的参数值u和v.(图1-4)对数学泥板的解释工作现在还在继续进行,今后也许还会有新的发现.