㈠ 数学符号都表示什么怎么读
运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号||,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
关系符号:如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号。
“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于)。
“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号。
“⊇”是包含符号,“|”表示“能整除”(例如a|b表示“a能整除b”,而||b表示r是a恰能整除b的最大幂次),x,y等任何字母都可以代表未知数。
结合符号:如小括号“()”,中括号“[]”,大括号“{}”,横线“—”,比如。
性质符号:如正号“+”,负号“-”,正负号“”(以及与之对应使用的负正号“”)。
省略符号:如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数),双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠),∵因为∴所以。
总和,连加:∑,求积,连乘:∏,从n个元素中取出r个元素所有不同的组合数(n元素的总个数;r参与选择的元素个数),幂等。
排列组合符号:C组合数、A(或P)排列数、n元素的总个数、r参与选择的元素个数、!阶乘,如5!=5×4×3×2×1=120,规定0!=1、!!半阶乘(又称双阶乘)。
例如:7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840。
离散数学符号:∀全称量、∃存在量词、├断定符(公式在L中可证)、╞满足符(公式在E上有效,公式在E上可满足)、﹁命题的“非”运算。
如命题的否定为﹁p、∧命题的“合取”(“与”)运算、∨命题的“析取”(“或”,“可兼或”)运算、→命题的“条件”运算。
↔命题的“双条件”运算的、p<=>q命题p与q的等价关系、p=>q命题p与q的蕴涵关系(p是q的充分条件,q是p的必要条件)、A*公式A的对偶公式,或表示A的数论倒数(此时亦可写为)。
wff合式公式:iff当且仅当、↑命题的“与非”运算(“与非门”)、↓命题的“或非”运算(“或非门”)、□模态词“必然”、◇模态词“可能”、∅空集、∈属于(如"A∈B",即“A属于B”)、∉不属于、P(A)集合A的幂集。
|A|集合A的点数、R²=R○R[R、=R、○R]关系R的“复合”、ℵAleph,阿列夫、⊆包含、⊂(或⫋)真包含、另外,还有相应的⊄,⊈,⊉等。
∪集合的并运算:U(P)表示P的领域、∩集合的交运算、-或集合的差运算、⊕集合的对称差运算、〡限制、集合关于关系R的等价类。
A/R集合A上关于R的商集、[a]元素a产生的循环群、I环,理想、Z/(n)模n的同余类集合、r(R)关系R的自反闭包。
s(R)关系R的对称闭包、CP命题演绎的定理(CP规则)、EG存在推广规则(存在量词引入规则)、ES存在量词特指规则(存在量词消去规则)、UG全称推广规则(全称量词引入规则)、US全称特指规则(全称量词消去规则)。
更多数学表达符号:
∞无穷大、π圆周率、|x|绝对值、∪并集、∩交集、≥大于等于、≤小于等于、≡恒等于或同余、ln(x)以e为底的对数、lg(x)以10为底的对数、floor(x)上取整函数、ceil(x)下取整函数。
xmody求余数、x-floor(x)小数部分、∫f(x)dx不定积分、∫[a:b]f(x)dxa到b的定积分、f(x)函数f在自变量x处的值、sin(x)在自变量x处的正弦函数值、exp(x)在自变量x处的指数函数值,常被写作ex、logba以b为底a的对数。
cosx在自变量x处余弦函数的值、tanx其值等于sinx/cosx、cotx余切函数的值或cosx/sinx、secx正割含数的值,其值等于1/cosx、cscx余割函数的值,其值等于1/sinx、asinxy正弦函数反函数在x处的值,即x=siny。
acosxy余弦函数反函数在x处的值,即x=cosy、atanxy正切函数反函数在x处的值,即x=tany、acotxy余切函数反函数在x处的值,即x=coty、asecxy正割函数反函数在x处的值,即x=secy、acscxy余割函数反函数在x处的值,即x=cscy。
㈡ 数学集合中的所有符号及其意义
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素.,集合可以用符号来表示,集合中的符号和意义如下:
∪ 并集
∩ 交集
⊂ A⊂B, A属于B
⊃ A⊃B, A包括B
∈ a∈A,a是A的元素
⊆ A⊆B,A不大于B
⊇ A⊇B,A不小于B
Φ 空集
R 实数
N 自然数
Z 整数
Z+正整数
Z- 负整数
㈢ 数学符号是什么意思
数学符号*是乘号的意思。*还表示除0之外的数,例:N*表示正整数。
我们现在常用于乘法运算的符号有两个,一个是“×”,另一个是“·”。 “×”是由1631年英国数学家奥雷特最早提出的,“·”是由英国数学家赫锐奥特首创的。
其他信息
在Microsoft Word中可以插入一般应用条件下的所有数学符号,以Word2010及2010版以上软件为例介绍操作方法:
打开Word2010文档窗口,单击需要添加数学符号的公式,并将插入条光标定位到目标位置。
在“公式工具/设计”功能区的“符号”分组中,单击“其他”按钮打开符号面板。默认显示的“基础数学”符号面板。用户可以在“基础数学”符号面板中找到最常用的数学符号。同样地,Alt+41420(即压下Alt不放,依次按41420(小键盘),最后放开Alt 就可以打出 √。
㈣ 数学符号都有那些都是什么意思
整理了一些重要的数学符号。
有理数集Q
Q表示的意义是:有理数集。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
整数集合Z
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数,分数。
实数集R
实数集,包含所有有理数和无理数的集合,通常用大写字母R表示。
18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
㈤ 数学中都有哪些符号都代表什么意思
∈是集合中的符号,表示属于关系,A∈B,表示集合A中的元素都在集合B的里面。tan是三角函数的符号,代表正切。
㈥ 所有数学符号具体含义
网络一下“数学符号具体含义”,你就知道!
http://wenku..com/view/d964dcba1a37f111f1855b09.html
㈦ 数学符号意思
∈属于符号,表示元素与集合之间的一种从属关系
∏求积符号
∑求和符号
∕相当于除号÷
√算术平方根,如±2的平方是4,那么4的算术平方根是2
∝正比于,常见于物理学,如a∝b说明当a增加,b也增加
∞无穷
表示一种趋向,+∞表示不断变大的趋势
∟直角符号
∠角符号
∣绝对值符号与除号
‖平行
刻画两直线的关系
∧交符号
逻辑基本符号,表示两个命题同时发生则命题成立
∨并符号
逻辑基本符号,表示两个命题有一个发生则命题成立
∩交符号
集合基本符号,表示两个集合同时满足
∪并符号
集合基本符号,表示至少满足一个集合
∫不定积分符号
微积分基本符号
∮积分符号
微积分基本符号
∴所以
∵因为
∶比例符号
∷比例
∽属于符号
集合基本符号
刻画两个集合间的从属关系
≈约等于符号
≌相似符号
刻画集合图形的基本特征
≈约等号
刻画两个关系式之间的关系
≠不等号
两者存在差异的地方
≡同余符号
数论基本符号,表示两个整数除以同一个特定的整数余数相等,例如5=2×2+1,7=2×3+1,那么5≡7
(mod
2)
≤不大于
关系符号
前者小于或者等于后者
≥不小于
关系符号
前者大于或者等于后者
≤远小于等于
关系符号
前者远小于后者或与后者相等
≥远大于等于
关系符号
前者远大于后者或与后者相等
≮非小于
同≥
≯非大于
同≤
⊙圆
⊙O表示圆心为O的圆
⊥垂直
刻画两直线或空间间关系
⊿三角形
⌒反三角函数
sin正弦函数
Cos余弦函数
tan正切函数
cot余切函数
sec正割函数
csc余割函数
log对数
ln自然对数
lg常用对数
+加法
-减法
×乘法
÷除法
㈧ 有谁能概括一下所有的数学符号的含义吗
数学符号(mathematical signs andsymbols)
在数学文献中用以表示数学概念、数学关系等的符号和记号。
数学符号是与数学同时产生的,数学中最早产生的概念是自然数概念,最早出现的数学符号则是数字符号。在所有已使用了文字的古代民族中都“发明”了数字记号,如古埃及人、巴比伦人、古希腊人、古中国人等(见记数法的“数字符号表”)。自然数概念的完善依赖于算术运算,在许多古代文明中很早就产生了算术运算及相应的符号,古代文明中一般用表意文字(古埃及、占巴比伦等)或不用符号而把两数并列(古希腊、古印度)表示加和乘,用特殊的符号表示减。中国古代由于依赖于算筹计算,所以不采用任何表示运算的符号(见筹算),必要时直接用文字叙述。
另一个最早产生的数学概念是几何图形。最初在研究几何图形时没采用特有的数学符号,公元2世纪起,古希腊的一些数学家开始采用表示几何图形(如三角形、四边形、圆等)和几何关系(如平行、垂直等)的符号,它们多以“象形”的方式构成(见初等几何符号)。
古代数学由于涉及的概念较少,关系比较简单,所以除数字符号外,不是非用符号不可的,所以采用符号是个别的甚至例外的事。欧几里得《几何原本》就没采用数学符号,10-12世纪的阿拉伯数学也以文字叙述为主。
15—16世纪,数学有了突飞猛进的发展,数学概念不断增多,数学关系日益复杂化。例如,人们的数的概念扩张到复数,指数、对数、方程等都有了长足的发展。由于概念的增多和关系的复杂化,依赖自然语言已无法精确地表述出数学概念和数学关系,必须建立精确的科学语言,否则将影响数学的进一步发展。数学发展的需要化为数学家创建数学符号的努力。在16—17世纪间,产生了系统的数学符号,韦达、奥特雷德、莱布尼茨等人在创立数学符号方面做了大量基础性工作。17世纪,数学已基本上符号化了,这是数学发展史上的一个飞跃,从此,数学概念和数学关系就表现出十分精确的性质,便于逻辑处理和计算,在符号化的基础上,数学迎来了近代的大发展。
考察数学符号的形成,有这样几种情况:(1)采用表意符号,如“+”、“-”、“×”、“÷”、“=”及开方、乘方等符号;(2)采用象形符号,如初等几何符号;(3)采用表述数学概念的拉丁语词的简化和缩写,如三角函数符号、一般函数符号.f、极限符号、微分积分符号等;(4)某些特定的符号,如π、e 、 ∈、角度符号等。
近现代数学的发展则保持了这样一个特点:在引入一种新的数学概念和数学关系的同时,也引入表示它们的符号。现代数学更进一步,还把数学中所需要的一部分逻辑形式化,用符号表示出来,即所谓“符号逻辑”或数理逻辑,关于符号的应用成为专门的学问。
最常见的数学符号一般有“+”“-”“×”“÷”“=”“>”“<”等。关于
它们的来历是这样的:
加减号“+”“-”是1489年德国数学家魏德曼在他的着作中首先使用的。英国
数学家奥屈特于1631年提出用“×”表示相乘,而另一种乘号“·”是英国数学家
赫锐奥特首创的。瑞士数学家拉哈在着作中正式将“÷”作为除号。等号“=”在
1540年首次被英国牛津大学的瑞柯德使用,后来经过法国数学家韦达和德国数学家莱
布尼茨的广泛使用,才为人们普遍接受。大于号“>”、小于号“<”也是英国数
学家赫锐奥特的创造。圆周率“π”是1737年瑞士大数学家欧拉第一个使用的,欧
拉还首先使用了函数记号“�(X)”、自然对数的底数“e”和虚数单位“i”,连加
号“∑”据说也是欧拉最早使用的。“∑”是希腊字母“σ”的大写,与英文的
“sum”(即中文“和”)的第一个字母“s”有渊源关系。法国哲学家和数学家笛卡儿
首次使用了平方根号“�”。
数学符号的使用是数学的重要特征,第一个系统使用数学符号的人是法国数学
家韦达。数学符号的系统使用是16世纪数学的一个重大进展,它使高度抽象的数学
材料有了合适的表达形式,同时为其他自然科学提供了最精确的语言,即数学语言。
http://www.eeeeee.org/wiki/%E6%95%B0%E5%AD%A6%E7%AC%A6%E5%8F%B7%E8%A1%A8
数学符号表
㈨ 有谁知道所有数学符号的意义
数学符号一般有以下几种:
(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。
符号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
{x} 小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
回答者:tzzjh - 助理 二级 11-9 10:49
--------------------------------------------------------------------------------
(1)数量符号
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶)等。
(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。
符号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
{x} 小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
{x} 小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
㈩ 数学符号M,Z,Q,R指的都是什么数
数学符号中没有M,有N,N代表自然数集;Z代表整数集;Q代表有理数集;R代表实数集;C代表复数集。
非负整数集是一种特定的集合,指全体自然数的集合,常用符号N表示。非负整数包括正整数和零。非负整数集是一个可列集。
由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。
有理数集,即由所有有理数所构成的集合,用黑体字母Q表示。有理数集是实数集的子集。
实数集通俗地认为,通常包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。
集合C={a+bi | a,b∈R}中的数,即形如a+bi(a,b∈R)的数叫做复数。其中i叫做虚数单位,全体复数所成的集合C叫做复数集。
(10)数学对所有的用符号表示什么意思扩展阅读:
集合特性:
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次[6]。
3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。