❶ 浅谈类比法在初中数学教学中的应用
摘要:数学类比和对比法是数学教学中常用的一种重要方法,文章通过实例阐述数学类比和对比法在初中数学教学中的应用。
数学问题浩如烟海,面对一个个数学问题如何着手求解?有些学生做了大量的题目,但考试遇到新题型或只是稍稍变换一下,就不知所措,原因是在平时的学习中,缺乏掌握数学思考方法。掌握一种新的思考方法要比学会解几道具体习题更为重要,这些解题方法和技巧是进一步学习数学不可缺少的工具,数学方法的学习,在数学学习中起到事半功倍的效果,本文就数学类比和对比法在初中教学中的具体应用进行阐述。
类比是根据两个对象有一部分性质类似,推出与这两个对象的其他性质相类似的一种推理方法。因此,类比是从特殊到特殊的推理。通过类比,可以发现新旧知识的相同点,利用已有的旧知识,来认识新知识。
对比是通过比较,找出一事物区别其他事物的特点,通过对比可以找出差异,有助于进一步加深对新知识的理解。
类比和对比这两种方法是相辅相成的,都是通过新旧知识的相互联系,利用已有的旧知识,揭示新知识的本质。
例如:在学习分式这章时,关键是要用与分数类比的方法导出分式概念,分式基本性质与分式的四则运算法则,这样新知识易为学生接受与掌握,具体操作如下:
首先,复习小学学过的分数概念:两数相除,可以表示成分数的形式.如3÷4= ,(-7)÷2=- ,5÷(-9)= , 一个分数由分子、分母和分数线构成,分子、分母都是数,但分母不能是零,为什么分母不能为零呢?因为零不能做除数,分数有正分数、负分数,如果分子等于零,只要分母不是零(不论是正数还是负数),这个分数的值就是零。把分数的概念引伸到代数式来,如 这两个式子有什么特点?(1)分式由分子、分母与分数线构成;(2)分母中含有字母,这就是分式,这样就很自然地引入了分式的概念,接着,指出分数与分式的区别所在:分数与分式形式相同,但分式中的分子、分母均为整式,且分母是含有字母的整式。
其次,在讲分式的基本性质时,先复习分数的基本性质,推想分式的基本性质,我们来看如何做不同分母的分数的加法: ; ,这里先将异分母化为同分母, ,这是根据什么呢?根据分数的基本性质:分数的分子与分母都乘以(
或除以)同一个不等于零的数,分数的值不变,分式是一般化了的分数,因此,分式应该有 ,这里,A、B、M是整式,根据分式的概念应该要求B 0,由分数的基本性质应该想到M 0 。因此,分式的基本性质是分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
第三,分式的四则运算顺序也可以类比分数进行,先做括号内的运算,然后再进行乘除运算,最后进行加减运算,这个顺序和步骤正是分式四则混合运算的顺序和步骤。概括地说是:“先乘除,后加减、括号内先进行”。
在几何教学中,在讲解相似三角形判定定理可类比全等三角形得到,全等形与相似形的关系:全等三角形是相似三角形,当相似比值K=l时的特例,全等与相似条件的比较:
(1)两角相等——两三角形相似
两角相等,夹边相等——两三角形全等;
(2)两边成比例、夹角相等——两三角形相似
两边相等,夹角相等——两三角形全等;
(3)三边对应成比例——两三角形相似
三边对应相等——两三角形全等。
此外,在多项式除法与多位数除法,因式分解与质因数分解:开立方与开平方,中心对称与轴对称;分比定理与合并定理;扇形面积公式与三角形面积公式等等,都可以通过类比和对比进行教学,这种数学方法的教学,学生在学习过程中能较轻松地接受新知识,在实践中也证明,这种类比和对比的数学方法,学生掌握的知识扎实,理解也较好。当然,类比和对比只能用来帮助我们建立猜想,作为研究问题的线索。
❷ 简述类比的含义,数学中常用的类比有哪些
“类比”就是找出两个看似完全不同的事物之间内在的相似性,借助一个事物来理解另外一个事物的过程。具体来说,你刚学习了一个新概念A,为了理解概念A,你发现另外一个已所熟知或理解的概念B与概念A之间有内在的相似性,因而,你就在它们之间的相似性上建立起联系,并借助概念B理解了概念A。
❸ 类比的数学类比
数学解题与数学发现一样,通常都是在通过类比、归纳等探测性方法进行探测的基础上,获得对有关问题的结论或解决方法的猜想,然后再设法证明或否定猜想,进而达到解决问题的目的.类比、归纳是获得猜想的两个重要的方法.
运用类比法解决问题,其基本过程可用框图表示如下:
可见,运用类比法的关键是寻找一个合适的类比对象.按寻找类比对象的角度不同,类比法常分为以下三个类型. 将三维空间的对象降到二维(或一维)空间中的对象,此种类比方法即为降维类比.
【例2】以棱长为1的正四面体的各棱为直径作球,S是所作六个球的交集.证明S中没有一对点的距离大于1。
【分析】考虑平面上的类比命题:“边长为1的正三角形,以各边为直径作圆,S‘是所作三个圆的交集”,通过探索S’的类似性质,以寻求本题的论证思路.如图,易知S‘包含于以正三角形重心为圆心,以为半径的圆内.因此S’内任意两点的距离不大于1以此方法即可获得解本题的思路。
证明:如图,正四面体 ABCD中,M、N分别为BC、AD的中点,G
为△BCD的中心,MN∩AG=O.显然O是正四面体ABCD的中心.易知OG=·AG=,并且可以推得以O为球心、OG为半径的球内任意两点间的距离不大于,其球O必包含S.现证明如下。
根据对称性,不妨考察空间区域四面体OMCG.设P为四面体OMCG内任一点,且P不在球O内,现证P亦不在S内。
若球O交OC于T点。△TON中,ON=,OT=,cos∠TON=cos(π-∠TOM)=-。由余弦定理:
TN2=ON2+OT2+2ON·OT·=,∴TN=。
又在 Rt△AGD中,N是AD的中点,∴GN=。由GN= NT=, OG=OT, ON=ON,得 △GON≌△TON。∴∠TON=∠GON,且均为钝角.
于是显然在△GOC内,不属于球O的任何点P,均有∠PON>;∠TON,即有PN>TN=,P点在 N为球心,AD为直径的球外,P点不属于区域S.
由此可见,球O包含六个球的交集S,即S中不存在两点,使其距离大于. 某些待解决的问题没有现成的类比物,但可通过观察,凭借结构上的相似性等寻找类比问题,然后可通过适当的代换,将原问题转化为类比问题来解决.
【例3】任给7个实数xk(k=1,2,…,7).证明其中有两个数xi,xj,满足不等式0≤≤·
【分析】若任给7个实数中有某两个相等,结论显然成立.若7个实数互不相等,则难以下手.但仔细观察可发现:与两角差的正切公式在结构上极为相似,故可选后者为类比物,并通过适当的代换将其转化为类比问题.作代换:xk=tanαk(k =l,2,…,7),证明必存在αi,αj,满足不等式0≤tan(αi-αj)≤·
证明:令xk=tanαk(k =l,2,…,7),αk∈(-,),则原命题转化为:证明存在两个实数αi,αj∈(-,),满足0≤tan(αi-αj)≤·
由抽屉原则知,αk中必有 4个在[0,)中或在(-,0)中,不妨设有4个在[0,)中.注意到tan0=0,tan=,而在[0,)内,tanx是增函数,故只需证明存在αi,αj,使0<;αi-αj <即可。为此将[0,)分成三个小区间:[0,]、(,]、(,)。又由抽屉原则知,4个αk中至少有2个比如αi,αj同属于某一区间,不妨设αi>;αj,则0≤αi-αj ≤,故0≤tan(αi-αj)≤·这样,与相应的xi=tanαi、xj=tanαj,便有0≤≤· 简化类比,就是将原命题类比到比原命题简单的类比命题,通过类比命题解决思路和方法的启发,寻求原命题的解决思路与方法.比如可先将多元问题类比为少元问题,高次问题类比到低次问题,普遍问题类比为特殊问题等.
【例4】已知xi≥0(i=1,2,…,n),且xl+x2+…+xn=1。
求证:1≤++…+≤.
【分析】我们可先把它类比为一简单的类比题:“已知xl≥0,x2≥0,且xl+x2 =1,求证1≤+≤”.本类比题的证明思路为:∵2≤xl+x2=l,∴0≤2≤1,则1≤xl+x2+2≤2,即1≤(+)2≤2,∴1≤+≤.这一证明过程中用到了基本不等式和配方法.这正是要寻找的证明原命题的思路和方法.
证明:由基本不等式有0≤2≤xi+xj,则
0≤2≤(n-1)(xl+x2+…+xn)=n-1
∴1≤xl+x2+…+xn +2≤n,即1≤(++…+)2≤n
∴1≤++…+≤.
所谓归纳,是指通过对特例的分析来引出普遍结论的一种推理形式.它由推理的前提和结论两部分构成:前提是若干已知的个别事实,是个别或特殊的判断、陈述,结论是从前提中通过推理而获得的猜想,是普遍性的陈述、判断.其思维模式是:设Mi(i=1,2,…,n)是要研究对象M的特例或子集,若Mi(i=1,2,…,n)具有性质P,则由此猜想M也可能具有性质P.
如果=M,这时的归纳法称为完全归纳法.由于它穷尽了被研究对象的一切特例,因而结论是正确可靠的.完全归纳法可以作为论证的方法,它又称为枚举归纳法.
如果是M的真子集,这时的归纳法称为不完全归纳法.由于不完全归纳法没有穷尽全部被研究的对象,得出的结论只能算猜想,结论的正确与否有待进一步证明或举反例.
本节主要介绍如何运用不完全归纳法获得猜想,对于完全归纳法,将在以后结合有关内容(如分类法)进行讲解.
【例5】证明:任何面积等于1的凸四边形的周长及两条对角线的长度之和不小于4十.
【分析】四边形的周长和对角线的长度和混在一起令人棘手,我们可以从特例考察起:先考虑面积为1的正方形,其周长恰为4,对角钱之和为2即.其次考察面积为1的菱形,若两对角线长记为l1、l2,那么菱形面积S=l1·l2,知
l1+ l2≥2=2=,菱形周长:l=4≥2=4。
由此,可以猜想:对一般的凸四边形也可将其周长和对角线长度和分开考虑.
【证明】设ABCD为任意一个面积为1的凸四边形,其有关线段及角标如图.则
SABCD= (eg+gf+fh+he)sinα
≤ (e+f)(g+h)≤,
∴e+f+g+h≥2,即对角线长度之和不小于.
∴a+b+c+d≥4,即周长不小于4.
综上所述,结论得证,
❹ 中学数学中常见得几种类比法
1、降维类比
将三维空间的对象降到二维(或一维)空间中的对象,此种类比方法即为降维类比。
2、结构类比
某些待解决的问题没有现成的类比物,但可通过观察,凭借结构上的相似性等寻找类比问题,然后可通过适当的代换,将原问题转化为类比问题来解决。
3、简化类比
简化类比,就是将原命题类比到比原命题简单的类比命题,通过类比命题的解决思路和方法的启发,寻求原命题的解决思路与方法。比如可先将多元问题类比为少元问题,高次问题类比到低次问题,普遍问题类比为特殊问题等。
❺ 如何用类比思想进行中学数学教学
3、类比思想
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。如讲授乘法分配律时,教师出示:(45+25)+13○45+(25+13),让学生猜猜它们的结果可能会怎样?再出示:(36+18)+22○36+(18+22),大胆猜猜一下,这两题的结果会怎样?你为什么这么肯定?理由是什么?仔细观察这些等式,你有什么发现?这样的发现会不会是巧合?如果换成其他的加数是否也存在着这样的规律?然后请每个同学再模仿写一个,进行验证。最后让学生用a、b、c三个字母把自己的发现表示出来。由于学生学习了加法交换律后,学生就能很容易用字母来表示加法结合律了。教师归纳总结出(a+b)+c=a+(b+c)。类比思想还可以应用到长方形的面积公式、平行四边形面积公式和三角形的面积公式。
4、转化思想方法
转化就是在研究和解决有关数学问题时,采用某种手段将一个问题转化成为另外一个问题来解决。一般是将复杂的问题转化为简单的问题,将难解问题转化为容易求解的问题,将未解决的问题转化为已解决的问题。
例如:上“整十、整百相乘”一课时,先让学生观察,然后问一问,能不能把整十相乘转化为我们以前所学过的几乘与几,这样学生不仅很快能掌握新学得知识,还可以自己解决整百相乘。我想这是不是再渗透转化思想方法呢?
5、符号化思想方法
符号化思想是新课程的一个重要理念。数学的符号化能够不分国家和种族;符号化思想以浓缩的形式表达大量信息;加快了数学思维的速度。小学数学中有数字符号、运算符号、关系符号、单位符号、约定符号等。单位符号有厘米(cm)、米(m)、分米(dm)、毫米(mm)、千米(km)、千克(kg)、克(g)、吨(t)、平方米(㎡ ) 、平方分米 (d㎡ )、平方厘米(c㎡ ) 、立方厘米(c m3
)、立方分米(dm3
)、 立方米(m3
)、毫升(mL)、升(L)。运算符号:+ - × ÷。关系符号:= < > ≈ ≠。约定符号:% ℃ ∠ 。数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。使数学学习简单、明了。
❻ 数学类比法的介绍
特指类比法在数学教学中的应用。在数学教学中应用类比法,可帮助学生理解各种概念、性质、定理、公式等,既有助于学生加深认识与记忆,也有助于激发学生的学习兴趣。
❼ 类比是几年级学的
七年级。
类比是一种数学思想,一般从初中数学开始渗透。如果说小学数学是在一步步模仿的话,那么初中数学就不再仅限于模仿,在学习初中数学时,类比思想将会体现出它更大的优越性。
❽ 数学中什么叫类推法
类比法也叫"比较类推法",它作为一种推理的方法,指的是根据两种事物在某些特征上的"相似",作出它们在其他特征上也可能"相似"的判断。
类比法在中学数学范围内应用极其广泛,是发现概念,方法,公式和定理的重要手段并能以此开创新领域,新分支。在中学数学学习中会起到事半功倍的效果。
类比法是中学数学重要的教学方法擞学中的许多定理,公式和法则是通过类比得到的,在解题中寻找问题的线索,往往也借助于类比方法,从而达到启发思路的目的。下面就中学数学中的类比法问题谈点粗浅的看法。
类推预测方法亦称类比预测法或类比广延预测法。是利用相似性原理和类比方法有一已知先导事物推测另一迟发事物发展趋势的一种预测方法。
该法的客观基础就是千差万别、千变万化的客观事物之间存在着共性。只要发现两种不同事物(一为先导者,一为迟发者)之间存在着若干相似之处,就可利用前者的变化特征和发展过程来类推后者的发展趋势。
如利用发达国家的工业化过程来类推发展中国家的工业化发展趋势,利用旧材料技术的发展过程来类推新材料技术的发展趋势,利用父母的生长过程来类推其子女的生长过程等。
❾ 怎么学好数学
一、要做什么?
首先,我们需要明确一个问题:怎样才能够得分?
对于数学考试而言,数学考试成绩由两层组成:“懂知识+会做题”。
所谓懂知识,即能够将课本和笔记中的公式记忆熟练,别人提问时候自己能够3-5秒内回答出来。有这一层积累,我们在做题时候就不会因为公式忘了或记错了,导致做题思路卡住,不能算出题目。一般而言,期末考试60分以下的,往往是公式记忆存在比较多的问题。
而60~90分孩子,往往在“会做题”领域有一定障碍,对于这些孩子而言,他们公式一问也能回答出来,但就是做题时候不会用,导致无法得分。那么对于他们而言,提升数学做题能力,多经历、积累和总结不同题型与做题技巧,则是努力的方向。
三、重点已经找到,有没有行之有效的,更具体的建议呢?
建议你从最近开始,做下面几件事情:
(1)笔记与课本中有关三角,数列,统计概率与空间几何平行垂直证明的定理,概念以及附加说明记忆熟练。这是我们保证做题时候自己思路的源泉。
(2)购买往年的模拟题,期末题目套卷。每天做一套试卷中的三角,数列,空间,统计概率大题。做完之后马上对答案,将自己内容和答案汇总对照,错误的进行改正。这个目的是增进我们的做题技巧与经验。
(3)不会的及时问。对于我们而言,可能我们条件看不懂,或者答案某些位置看不懂,此时如果自己能力无法应对情况下,一定要及时问同学或老师,让自己弄懂更多的内容。
(4)持之以恒。一般而言,在最开始做这件事情时候,往往是很不习惯,甚至比较痛苦的过程。但是这是我们增进自己做题能力与技巧的重要途径,因为只有多经历、多总结,才能够突破过往的自己,达到新的境界。很多时候,我们所做的选择,并不是 “正确”和“错误”,而是 “正确”和“容易”。