⑴ 概率论 二维期望的求法
没问题可以的,可以这样理解
二维随机变量求Eg(X,Y)=∬g(x,y)f(x,y)dxdy
你说的EX就相当于g(X,Y)=X的情况,这时EX=∬xf(x,y)dxdy。
⑵ 求问:关于二维连续型随机变量的数学期望
这是连续型随机变量的数学期望的定义:取值(即所给函数g(x,y))乘以密度函数;如果是离散的,期望就等于取值乘以概率
⑶ 数学里面期望值是什么怎么算
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
期望值计算:
(3)二维数学期望怎么算扩展阅读:
期望值学术解释:
1.期望值是指人们对所实现的目标主观上的一种估计;
2.期望值是指人们对自己的行为和努力能否导致所企求之结果的主观估计,即根据个体经验判断实现其目标可能性的大小;
3.期望值是指对某种激励效能的预测;
4.期望值是指社会大众对处在某一社会地位、角色的个人或阶层所应当具有的道德水准和人生观、价值观的全部内涵的一种主观愿望。
期望的来源:
在17世纪,有一个赌徒向法国着名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,分配这100法郎:
用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。
可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。
⑷ 数学期望的计算公式,具体怎么计算
公式主要为:
性质3和性质4可以推到到任意有限个相互独立的随机变量之和或之积的情况。
参考资料:数学期望-网络
⑸ 二维条件数学期望怎么求
二维随机变量求Eg(X,Y)=∬g(x,y)f(x,y)dxdy 你说的EX就相当于g(X,Y)=X的情况,这时EX=∬xf(x,y)dxdy。
⑹ 什么是数学期望如何计算
数学期望是试验中每次可能结果的概率乘以其结果的总和。
计算公式:
1、离散型:
离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:
⑺ 连续性二维随机变量数学期望
①求E(X),先求出X的边缘分布密度函数fX(x)。根据定义,fX(x)=∫(-∞,∞)f(x,y)fy=∫(0,∞)e^(-x-y)dy=[e^(-x)]∫(0,∞)e^(-y)dy=e^(-x)。
②按定义求期望值。E(X)=∫(0,∞)xfX(x)dx=∫(0,∞)xe^(-x)dx=1。
E(X+Y)=∫(0,∞)∫(0,∞)(x+y)e^(-x-y)dxdy==∫(0,∞)∫(0,∞)xe^(-x-y)dxdy+∫(0,∞)∫(0,∞)y e^(-x-y)dxdy=2。
E[e^(-x)]=∫(0,∞)[e^(-x)]fX(x)dx=∫(0,∞)e^(-2x)dx=1/2。
供参考。
⑻ 二维随机变量已知概率密度,求期望方差
概率密度:f(x)=(1/2√π)exp{-(x-3)²/2*2}
根据题中正态概率密度函数表达式就可以立马得到随机变量的数学期望和方差:
数学期望:μ=3
方差:σ²=2
连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。
而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。
(8)二维数学期望怎么算扩展阅读:
连续随机变量在任意点的概率为0。作为推论,连续随机变量在某一区间上的概率与该区间是开的还是闭的无关。注意概率P{x=a}=0,但{x=a}不是不可能的事件。
由于随机变量X的值只取决于概率密度函数的积分,所以概率密度函数在单个点上的值并不影响随机变量的性能。
如果一个函数和概率密度函数X只有有限数量的不同的值,可数无限或对整个实数线,这项措施是零(0组测量),然后函数也可以X的概率密度函数。
⑼ 不懂离散型二维变量数学期望的计算公式如何代入计算,求大侠帮忙,谢谢
这是一个离散型随即变量函数的数学期望问题: 根据期望的公式有E(X)=X*P(X) 同理:E(Y)=∑(Y*P(Y))=∑(Y*P(X)) 这里:P(Y)=P(X)因为x与y是单调函数关系 这里:Y=T(1-e^-aX) 这里:X服从参数为λ的泊松分布,即P(X)=(λ^x)(e^-λ)/x! 这里:X取0,1...
⑽ 数学期望 怎么算
数学期望也就是求平均值,它通过样本的平均情况来反映整体!