㈠ 数学递推公式
公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法等等。
类型一
归纳—猜想—证明
由数列的递推公式可写出数列的前几项,再由前几项总结出规律,猜想出数列的一个通项公式,最后用数学归纳法证明.
类型二
“逐差法”和“积商法”
(1)当数列的递推公式可以化为an+1-an=f(n)时,取n=1,2,3,…,n-1,得n-1个式子:
a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1),
且f(1)+f(2)+…+f(n-1)可求得时,两边累加得通项an,此法称为“逐差法”.
(2)当数列的递推公式可以化为an+1/an=f(n)时,令n=1,2,3,…,n-1,得n-1个式子,即
a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,an/an-1=f(n-1),且f(1)f(2)f(3)…f(n-1)可求得时,两边连乘可求出an,此法称为“积商法”.
类型三
构造法
递推式是pan=qan-1+f(n)(p、q是不为零的常数),可用待定系数法构造一个新的等比数列求解.
类型四
可转化为类型三求通项
(1)“对数法”转化为类型三.
递推式为an+1=qank(q>0,k≠0且k≠1,a1>0),两边取常用对数,得lgan+1=klgan+lgq,令lgan=bn,则有bn+1=kbn+lgq,转化为类型三.
(2)“倒数法”转化为类型三.
递推式为商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb).
若b=0,得an+1=pan/(qan+c).因为an≠0,所以两边取倒数得1/an+1=q/p+c/pan,令bn=1/an,则bn+1=(c/p)bn+q/p,转化为类型三.
若b≠0,设an+1+x=y(an+x)/qan+c,与已知递推式比较求得x、y,令bn=an+x,得bn+1=ybn/qan+c,转化为b=0的情况.
类型五
递推式为an+1/an=qn/n+k(q≠0,k∈N)
可先将等式(n+k)an+1=qnan两边同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)•nan,则bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1.
从而bn+1=qbn,因此数列{bn}是公比为q,首项为b1=k(k-1)(k-2)…2•1•a1=k!a1的等比数列,进而可求得an.
总之,由数列的递推公式求通项公式的问题比较复杂,不可能一一论及,但只要我们抓住递推数列的递推关系,分析结构特征,善于合理变形,就能找到解决问题的有效途径.
㈡ 数列的递推公式有哪几种求助各位~!
1)
分数类的可以用.裂项求和
例题
1/1*2+1/2*3+1/3*14.........1/n(n+1)
=1-1/2+1/2-1/3+..+1/n-1/n+1
=n/n+1
只要是分式数列求和基本可以采用裂项法
裂项的方法是用分母中较小因式的倒数减去较大因式的倒数,通分后与原通项公式相比较就可以得到所需要的常数
2)
叠加法
1 3 6 10 15 ........的通式是什么
a2-a1=2
a3-a2=3
a4-a3=4
a5-a4=5
3)
an=
a6-a5=6
..
an-a(n-1)=n
a2-a1+(a3-a2)+(a4-a3)+(a5-a4)+(a6-a5)+..+(an-a(n-1))
=2+3+4+..+n
an-a1=(n+2)(n-1)/2
an=(n^2+n)/2
3)
公式法
Sn=an^2+bn
an=Sn-S(n-1)
例:
a1=3
Sn=n^2+2n
S(n-1)=(n-1)^2+2(n-1)
an=2n+1,
4)拼凑法
an=3a(n-1)+2
(an+1)=3(a(n-1)+1)
(an+1)/(a(n-1)+1)=3
an+1是个等比数列,
如:
an=(a(n-1)/(2a(n-1)+2)
1/an=(2a(n-1)+2)/a(n-1)
=2+2/a(n-1)
(1/an+2)=2(1/a(n-1)+2)
((1/an)+2)是等比数列
还有很多==递推方法
㈢ 什么是数列的递推公式,什么是数列的通项公式数列的递推公式与通项公式怎么理解,
递推公式:
如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为an=a(n-1)+a(n-2)
等差数列递推公式:an=a(n-1)+d(d为公差)
等比数列递推公式:bn=b(n-1)*
q
(q为公比)
通项公式:
如果一个数列的第n项an与其项数n之间的关系可用式子an=f(n)来表示,这个式子就称为该数列的通项公式。
定义怕给错了,上面是摘的网络
递推公式就是知道前几项用公式推出后一项(所谓“递推”)
通项公式就是知道是第几项直接能得出此项的值(所以是“通”项)
关系的话……有通项公式可以求出递推公式,有递推公式和首项(或前几项)可以得到递推公式【用数学归纳法】
㈣ 数列递推算法的原理
什么是递推
所谓递推,是指从已知的初始条件出发,依据某种递推关系,逐次推出所要求的各中间结果及最后结果。其中初始条件或是问题本身已经给定,或是通过对问题的分析与化简后确定。
从已知条件出发逐步推到问题结果,此种方法叫顺推。
从问题出发逐步推到已知条件,此种方法叫逆推。
无论顺推还是逆推,其关键是要找到递推式。这种处理问题的方法能使复杂运算化为若干步重复的简单运算,充分发挥出计算机擅长于重复处理的特点。
递推法是一种重要的数学方法,在数学的各个领域中都有广泛的运用,也是计算机用于数值计算的一个重要算法。
递推算法的首要问题是得到相邻的数据项间的关系(即递推关系)。递推算法避开了求通项公式的麻烦,把一个复杂的问题的求解,分解成了连续的若干步简单运算。一般说来,可以将递推算法看成是一种特殊的迭代算法。
递推的特点
可用递推算法求解的题目一般有以下两个特点:
1、问题可以划分成多个状态;
2、除初始状态外,其它各个状态都可以用固定的递推关系式来表示。
在我们实际解题中,题目不会直接给出递推关系式,而是需要通过分析各种状态,找出递推关系式。
【例1】数字三角形。
如下所示为一个数字三角形。请编一个程序计算从顶到底的某处的一条路径,使该路径所经过的数字总和最大。只要求输出总和。
1、 一步可沿左斜线向下或右斜线向下走;
2、 三角形行数小于等于100;
3、 三角形中的数字为0,1,…,99;
测试数据通过键盘逐行输入,如上例数据应以如下所示格式输入:
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
【算法分析】
此题解法有多种,从递推的思想出发,设想,当从顶层沿某条路径走到第i层向第i+1层前进时,我们的选择一定是沿其下两条可行路径中最大数字的方向前进,为此,我们可以采用倒推的手法,设a[i][j]存放从i,j 出发到达n层的最大值,则a[i][j]=max{a[i][j]+a[i+1][j],a[i][j]+a[i+1][j+1]},a[1][1] 即为所求的数字总和的最大值。
//【参考程序】
#include<iostream>
using namespace std;
int main(){
int n,i,j,a[101][101];
cin>>n;
for (i=1;i<=n;i++)
for (j=1;j<=i;j++)
cin>>a[i][j]; //输入数字三角形的值
for (i=n-1;i>=1;i--)
for (j=1;j<=i;j++)
{
if (a[i+1][j]>=a[i+1][j+1]) a[i][j]+=a[i+1][j]; //路径选择
else a[i][j]+=a[i+1][j+1];
}
cout<<a[1][1]<<endl;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
思考
如果要输出最大和的路径该怎么处理呢?
【例2】 骨牌问题
有2 × n的一个长方形方格,用一个1 × 2的骨牌铺满方格。
编写一个程序,试对给出的任意一个n(n>0), 输出铺法总数。
【算法分析】
(1)面对上述问题,如果思考方法不恰当,要想获得问题的解答是相当困难的。可以用递推方法归纳出问题解的一般规律。
(2)当n=1时,只能是一种铺法,铺法总数有示为x1=1。
(3)当n=2时:骨牌可以两个并列竖排,也可以并列横排,再无其他方法,如下左图所示,因此,铺法总数表示为x2=2;
(4)当n=3时:骨牌可以全部竖排,也可以认为在方格中已经有一个竖排骨牌,则需要在方格中排列两个横排骨牌(无重复方法),若已经在方格中排列两个横排骨牌,则必须在方格中排列一个竖排骨牌。如上右图,再无其他排列方法,因此铺法总数表示为x3=3。
由此可以看出,当n=3时的排列骨牌的方法数是n=1和n=2排列方法数的和
㈤ 递推公式,数学
如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式。例如斐波纳契数列的递推公式为an=an-1+an-2。
等差数列递推公式:an=d(n-1)+a(d为公差a为首项)。
等比数列递推公式:bn=q(n-1)*b (q为公比b为首项)。
由递推公式写出数列的方法:
1、根据递推公式写出数列的前几项,依次代入计算即可。
2、若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式。
(5)数学递推法怎么写扩展阅读:
亦称递归列。由前面的项能推出后面的项的数列。指对所有n>p,满足形如an=f(an-1,an-2,…,an-p)的关系式的序列{an},其中f为某个函数。p是某个固定的正整数,a1,a2,…,ap为已知数。
p称为这个递推列的阶数.上述关系式称为递推公式,给定a1,a2,…,ap,可以从它得到所有an。形如an+c1an-1+c2an-2+…+cpan-p=0(c1,c2,…,cp是常数)的递推公式称为线性递推公式,相应的序列称为线性递推列。
最简单的递推列是一阶递推列,即满足an=f(an-1)的序列{an}.它又称迭代列。等差数列与等比数列都是线性的迭代列。
㈥ 怎样用递推法计算行列式
递推法,主要针对带形行列式,例如上面这个行列式的通用解法:
㈦ 什么是递推公式
如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
例如斐波纳契数列的递推公式为an=an-1+an-2
由递推公式写出数列的方法:
1、根据递推公式写出数列的前几项,依次代入计算即可;
2、若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式。
(7)数学递推法怎么写扩展阅读
常见的递推公式,如等差数列。
等差数列从第二项开始每一项是前项和后项的算术平均数。
如果等差数列的公差是正数,则该等差数列是递增数列;如果等差数列的公差是负数,则该数列是递减数列;如果等差数列的公差等于零,则该数列是常数列。
对于一个数列al,a2,…,an,…,如果它的相邻两项之差a2-a1,a3-a2,…,an+1-an,…构成公差不为零的等差数列,则称数列{an}为二阶等差数列。
运用递归的方法可以依次定义各阶等差数列:对于数列{an},如果{an+1-an}是r阶等差数列,则称数列{an}是r+1阶等差数列.二阶或二阶以上的等差数列称为高阶等差数列。
㈧ 数列的递推法是什么意思
就是用等式给出一个数列任意相邻项之间存在的规律,称之为递推公式,是对数列规律的一种呈现方式。最简单的是给出任意相邻两项之间的规律,并给出第一项的值;也有给出任意相邻三项之间的规律,并给出第一项和第二项的值。根据这样的递推公式,我们可以依次求出已知项的后一项,再后一项……,还可以求出数列的通项公式。
递推公式与通项公式的相同之处都是揭示数列存在的规律;不同之处在于前者揭示的是任意相邻项之间的规律,后者揭示的是任一项与项数之间的规律。
㈨ 用递推法计算这个n阶行列式,怎么做
使用递推法计算行列式,一般分三个步骤,首先找出递推关系式,然后算出结果,最后用数学归纳法证明结果正确