① sin\cos这些概念最初是在初中几年级开始学的 哪一章的内容
sin\cos这些概念最初是在初中三年级开始学的,解直角三角形一章的内容
② 初中数学有关COS,SIN之类的是在哪一章节
九下第一章
③ 三角函数是初中几年级开始学的
从初三开始,也就是九年级,函数主要教sin,cos,tan,不是很难,但题目多变,也要记住几个常用的,比如sin0.5是30°角等等
④ sin几年级学的
sin\cos这些概念最初是在初中三年级开始学的,解直角三角形一章的内容
⑤ 初三数学三角函数的定义是什么Sin、Cos、Tan分别表示什么写详细点,急用!谢谢
sin,
cos,
tan
都是三角函数,分别叫做“正弦”、“余弦”、“正切”。
在初中阶段,这三个三角函数是这样解释的:
在一个直角三角形中,设∠C=90°,∠A,
B,
C
所对的边分别记作
a,b,c,那么对于锐角∠A,它的对边
a
和斜边
c
的比值
a/c
叫做∠A的正弦,记作
sinA;它的邻直角边
b
和斜边
c
的比值
b/c
叫做∠A的余弦,记作
cosA;它的对边
a
和邻直角边
b
的比值
a/b
叫做∠A的正切,记作
tanA。
在高中阶段,这三个三角函数是这样解释的:
在一个平面直角坐标系中,以原点为圆心,1
为半径画一个圆,这个圆交
x
轴于
A
点。以
O
为旋转中心,将
A
点逆时针旋转一定的角度α至
B
点,设此时
B
点的坐标是(x,y),那么此时
y
的值就叫做α的正弦,记作
sinα;此时
x
的值就叫做α的余弦,记作
cosα;y
与
x
的比值
y/x
就叫做α的正切,记作
tanα。
⑥ 三角函数是初中还是高中学的
三角函数是初中学学习的,是通向数学领域的基础知识之一。三角函数是初中数学九年级的内容。包括正弦、余弦和正切。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数知识点:
正弦(sin):角a的对边比上斜边。
余弦(cos):角α的邻边比上斜边。
正切(tan):角a的对边比上邻边。
余切(cot):角α的邻边比上对边。
正割(sec):角a的斜边比上邻边。
余割(csc):角α的斜边比上对边。
⑦ 初中三角函数的知识点有哪些,怎么学习
初中数学锐角三角函数通常作为选择题,填空题和应用题压轴题出现,考察同学们灵活运用公式和定理能力,是中考一大难点之一。初中数学锐角三角函数知识点一览:锐角三角函数定义,正弦(sin),余弦(cos)和正切(tan)介绍,锐角三角函数公式(特殊三角度数的特殊值,两角和公式半角公式,和差化积公式),锐角三角函数图像和性质,锐角三角函数综合应用题。
一、锐角三角函数定义
锐角三角函数是以锐角为自变量,以此值为函数值的函数。如图:我们把锐角∠A的正弦、余弦、正切和余切都叫做∠A的锐角函数。
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。初中数学主要考察正弦(sin),余弦(cos)和正切(tan)。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
二、锐角三角函数公式
关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的特殊值。如:
sin30°=1/2
sin45°=√2/2
sin60°=√3/2
cos30°=√3/2
cos45°=√2/2
cos60°=1/2
tan30°=√3/3
tan45°=1
tan60°=√3[1]
cot30°=√3
cot45°=1
cot60°=√3/3
其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
除了以上常考的初中三角函数公示之外,还有半角公式和和差化积公式也在选择题中用到。所以同学们还是要好好掌握。
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB - ctgA+ctgBsin(A+B)/sinAsinB 三、锐角三角函数图像和性质
四、锐角三角函数综合应用题
已知:一次函数y=-2x+10的图象与反比例函数y=k/x(k>0)的图象相交于A,B两点(A在B的右侧).
(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;
(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当A(a,-2a+10),B(b,-2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若BC/BD=5/2,求△ABC的面积.
考点:
反比例函数综合题;待定系数法求一次函数解析式;反比例函数与一次函数的交点问题;相似三角形的判定与性质.
解答:
解:(1)把A(4,2)代入y=k/x,得k=4×2=8.
∴反比例函数的解析式为y=8/x.
解方程组y=2x+10
y=8/x,得x=1 y=8
或x=4 y=2,
∴点B的坐标为(1,8);
(2)①若∠BAP=90°,
过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,
对于y=-2x+10,
当y=0时,-2x+10=0,解得x=5,
∴点E(5,0),OE=5.
∵A(4,2),∴OH=4,AH=2,
∴HE=5-4=1.
∵AH⊥OE,∴∠AHM=∠AHE=90°.
又∵∠BAP=90°,
∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,
∴∠MAH=∠AEM,
∴△AHM∽△EHA,
∴AH/EH=MH/AH,
∴2/1=MH/2,
∴MH=4,
∴M(0,0),
可设直线AP的解析式为y=mx
则有4m=2,解得m=1/2,
∴直线AP的解析式为y=1/2x,
解方程组y=1/2x,
y=8/x,得x=4 y=2
或x=?4 y=?2,
∴点P的坐标为(-4,-2).
②若∠ABP=90°,
同理可得:点P的坐标为(-16,-1/2).
综上所述:符合条件的点P的坐标为(-4,-2)、(-16,-1/2);
(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,
则有BS∥CT,∴△CTD∽△BSD,
∴CD/BD=CT/BS.
∵BC/BD=5/2,
∴CT/BS=CD/BD=3/2.
∵A(a,-2a+10),B(b,-2b+10),
∴C(-a,2a-10),CT=a,BS=b,
∴a/b=3/2
,即b=2/3a.
∵A(a,-2a+10),B(b,-2b+10)都在反比例函数y=k/x的图象上,
∴a(-2a+10)=b(-2b+10),
∴a(-2a+10)=2/3
a(-2×2/3a+10).
∵a≠0,
∴-2a+10=2/3
(-2×2/3a+10),
解得:a=3.
∴A(3,4),B(2,6),C(-3,-4).
设直线BC的解析式为y=px+q,
则有2p+q=6
?3p+q=?4,
解得:p=2q=2,
∴直线BC的解析式为y=2x+2.
当x=0时,y=2,则点D(0,2),OD=2,
∴S△COB=S△ODC+S△ODB=1/2
ODCT+1/2ODBS=1/2×2×3+1/2×2×2=5.
∵OA=OC,
∴S△AOB=S△COB,
∴S△ABC=2S△COB=10. 以上就是初中数学锐角三角函数知识点总结,小编推荐同学继续浏览《初中数学知识点专题汇总》。对于想要通过参加初中数学补习班来获得优质的数学学习资源和学习技巧,使自身成绩有所提升的同学,昂立新课程推荐以下课程:
初二数学双师定向尖子班
初二数学名师网络辅导课
初三数学定向尖子班
初三数学名师网络辅导课
中考数学自招名师网课
(以上课程是热门推荐课程,更多相关课程,可登陆官网浏览。)
初中数学学习课程分网络和面授,有小班制,大班制,1对1,1对3形式,授课校区分布在上海各个地域,面授班课时以昂立新课程官网颁布课时为主,具体费用可咨询在线客服或拨打热线4008-770-970。
⑧ 数学中的Sin和Cos是什么意思
sin, cos都是三角函数,分别叫做“正弦”、“余弦”、“正切”。
在初中阶段,这三个三角函数是这样解释的:
在一个直角三角形中,设∠C=90°,∠A,B,C所对的边分别记作a,b,c,那么对于锐角∠A,它的对边a和斜边c的比值a/c叫做∠A的正弦,记作sinA;它的邻直角边b和斜边c的比值b/c叫做∠A的余弦,记作cosA;它的对边a和邻直角边b的比值a/b叫做∠A的正切,记作tanA。
在高中阶段,这三个三角函数是这样解释的:
在一个平面直角坐标系中,以原点为圆心,1为半径画一个圆,这个圆交x轴于A点。以O为旋转中心,将A点逆时针旋转一定的角度α至B点,设此时B点的坐标是(x,y),那么此时y的值就叫做α的正弦,记作sinα;此时x的值就叫做α的余弦,记作cosα;y与x的比值y/x就叫做α的正切,记作tanα。
三角函数公式
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
⑨ sin,cos,tan是哪个年级学的知识
这是三角函数
从初三开始学
不过初中知识学个皮毛
到高中会有更深入的学习
⑩ 数学sin是初几的知识
全面 自己看